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As you read these words, light is striking
your retinas, triggering chemical and electri-
cal cascades. For the information contained
within these wavelengths to be of use to
you, your brain must encode, process, and
transform it into more abstract representa-
tions (Treisman, 1986). Importantly, this
sense-making process takes time. Carefully
controlled experiments have shown that a
single flashed image can generate reliable
cortical responses that last;1 s (Carlson et
al., 2013). In everyday situations, our eyes
do not have the luxury of receiving distinct
packets of information at convenient 1 s
intervals, and are instead bombarded with
continuous inputs. How then do our brains
encode and process rapid streams of visual
events without mixing and muddying this
information?

In a recent paper published in The
Journal of Neuroscience, King and Wyart
(2021) investigated this question using
EEG recordings from 15 healthy adult par-
ticipants. Neural activity was recorded
while participants viewed ;5000 Gabor
patches (black and white gratings tilted at
random angles) flashed every 250ms.

Importantly, each successive stimulus was
uncorrelated from its neighbors, allowing
the researchers to examine how distinct
stimuli were encoded in the brain over
time.

Given that we can function in the face
of continuous visual input, our brains
must be able to encode stimulus represen-
tations, which persist even as new stimuli
appear. As a first step, King and Wyart
(2021) elegantly showed that it is possible
to detect these lasting representations via
whole-brain decoding analyses, even for
stimuli flashed in rapid succession. To
examine the encoding of stimulus-specific
information, the authors fit multivariate lin-
ear regressionmodels to predict the orienta-
tion of each presented stimulus from the
voltage of all EEG electrodes. They also
examined whether the change in orienta-
tion between stimuli could be predicted, as
influential theories suggest that unexpected
changes in input may be prioritized when
encoding information (Rao, 1999; Friston,
2005). With cross-validation, they assessed
the accuracy of these predictions and found
that, across participants, both stimulus
angles and successive angular differences
could be decoded between;50 and 950ms
after stimulus onset. Critically, at any given
moment, between 2 and 5 stimulus angles
and 2 and 4 angular differences could be
decoded. This suggests that multiple stimuli
were simultaneously encoded in partici-
pants’ neural activity.

One way that multiple, distinct stimulus
representations could be simultaneously
encoded in the brain is if information were

routed through different cortical regions
over time. It has long been known that vis-
ual information cascades along a “visual
hierarchy” of different brain areas after leav-
ing the retina. As a second step, King and
Wyart (2021) built on this knowledge and
demonstrated that stimulus-specific
activity appeared to flow along the vis-
ual hierarchy, in an apparent “traveling
wave.” Specifically, they used encoding
models and source localization techni-
ques to show that stimulus information
traveled from “low-level” regions in the
occipital cortex to more “high-level”
inferotemporal and dorsoparietal areas.
While one must be careful when mak-
ing inferences about source-localized
EEG signals, these findings are consist-
ent with the view that, at any given
moment, multiple “snapshots” of the
recent visual past are encoded along the
visual hierarchy.

The visual system can be thought of as
a network of interconnected neural popu-
lations set within distinct “layers” (differ-
ent cortical regions; e.g., retina, lateral
geniculate nucleus, primary visual cortex,
etc.). Visual information enters at the ret-
ina and flows through the network over
time. Thinking in this way, questions arise
regarding the structure of this network.
For example, what neural populations are
present at each layer, and what connec-
tions exist both within and between layers?
As the third and final step in their paper,
King and Wyart (2021) considered these
questions and developed a computational
framework that attempts to model the
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macroscopic structure and dynamics of
the visual hierarchy.

This modeling framework consists of
a hierarchical system, all candidate con-
figurations of which share the same core
structure: 10 layers with one observable
excitatory unit (x) and one unobservable
inhibitory unit (y) per layer. The activity
of these units represents the postsynaptic
potentials of aligned pyramidal neurons
(x) and unaligned (and therefore unob-
servable with EEG) interneurons (y). To
explore different network architectures,
the authors systematically searched across
configurations of within- and between-
layer connections, connection weights, and
unit activation functions. For each candi-
date network, they considered the activity
patterns that would be observed if excita-
tory unit activity was recorded with EEG.

To distinguish between the activity pat-
terns of different networks, the authors
used temporal generalization analyses (King
and Dehaene, 2014). This involves training
decoders on data from specific time points
and examining the accuracy of these “tem-
poral decoders” when tested at different
time points. This can reveal rich informa-
tion about the dynamics underlying time-
resolved neural data. For example, if a de-
coder accurately generalizes from one time
point to another, this suggests that similar
populations of neurons are active at each
time point. However, if a decoder does not
generalize (or generalizes with below-
chance accuracy), then this suggests that the
patterns of neural activity significantly differ
(or are opposing).

The authors first performed temporal
generalization analyses on participants’
EEG recordings, revealing three key
details. First, stimulus onset evoked tran-
sient waves of activity, evidenced by a diag-
onal pattern of temporal generalization
within a training by testing time matrix
(consistent with hierarchical processing,
King andWyart, 2021, their Fig. 3). Second,
stimulus offset (and the concurrent onset of
subsequent stimuli) evoked transient waves
of opposite amplitude, evidenced by flank-
ing diagonals of below-chance decoding.
Finally, maintenance of stimulus-related in-
formation increased over time, evidenced
by increasing peri-diagonal generalization.

To find the simplest model that could
account for these patterns, the authors
searched through increasingly complex net-
work architectures. After searching through
;1.5 billion models, two valid models
were found. Both were feedforward, locally
recurrent networks in which stimulus in-
formation was maintained in inhibitory
units and only briefly observable in

excitatory units following changes in input.
Somewhat counterintuitively, this suggests
that stimulus-specific information was
maintained in populations of neurons
undetectable with EEG.

In appraising the work of King and
Wyart (2021), it is important to consider
the generality of their findings. A series of
recent studies have shown that it is possi-
ble to decode multiple representations of
distinct object-images at rapid presenta-
tion rates (5 and 20Hz) (Grootswagers
et al., 2019a,b; Robinson et al., 2019).
Therefore, the broad observation that
multiple visual events are simultaneously
encoded along the visual hierarchy holds
for different stimuli and presentation
rates.

Interestingly, Grootswagers et al. (2019a,b)
found that late-stage stimulus processing
was impaired at ultra-rapid presentation
rates (20Hz). This processing impairment
might be explained by the finding of King
and Wyart (2021) that information is
increasingly maintained at higher levels of
the visual hierarchy, as prolonged mainte-
nance may increase the likelihood of inter-
ference from subsequent stimuli. However,
since this previous work predates the de-
velopment of the current modeling frame-
work, it remains to be seen whether the
network architectures uncovered by King
and Wyart (2021) can capture the neural
dynamics observed in these past studies, as
well as those associated with the processing
of visual features other than orientation,
more generally.

King and Wyart (2021) used random
stimulus sequences to disentangle neigh-
boring stimulus representations. However,
in real-world scenes, visual inputs are of-
ten temporally correlated or contextually
predictable. Because it takes time for the
brain to process information, there is a lag
between when an event happens in the
“outside world” and when it is registered
in the brain. To overcome this, the brain
may attempt to exploit spatiotemporal
correlations or contextual expectations to
predict future inputs and better align neu-
ral representations with the outside world
(e.g., Hogendoorn and Burkitt, 2019, their
Fig. 2). Supporting this theory, studies
have found evidence of predictive mecha-
nisms within human and nonhuman vis-
ual systems.

For example, studies of neural responses
to predictable motion have found that reti-
nal ganglion cells in salamanders, rabbits,
and monkeys (e.g., Berry et al., 1999; Liu et
al., 2021), as well as neurons in the primary
visual cortex (V1) of cats and monkeys
(e.g., Jancke et al., 2004; Benvenuti et al.,

2020), display anticipatory firing patterns.
That is, they appear to preempt the arrival
of stimuli that are moving along predictable
trajectories. On a more macroscopic level,
recent human EEG and MEG experiments
have found evidence of anticipatory “pre-
activation” of stimulus representations over
the visual cortex, for predictable stimulus
sequences (e.g., Kok et al., 2017; Blom et al.,
2020). Finally, human fMRI and transcra-
nial magnetic stimulation studies have also
shown that feedback between layers of the
visual system (e.g., between areas V5/MT
and V1) appears to mediate the formation
of predictive visual representations (Sterzer
et al., 2006; Vetter et al., 2015).

Collectively, these studies provide strong
evidence that predictive mechanisms do
exist within human and nonhuman visual
systems. However, since King and Wyart
(2021) used unpredictable stimuli, the dy-
namics of such mechanisms will not have
been detectable. Future research should
therefore investigate the neural dynamics
associated with predictable visual sequences,
using the current modeling approach (for a
discussion of how the effects of adaptation,
expectation, and additional confounding
factors could be disentangled in such
research, see Feuerriegel et al., 2021). By
harnessing King andWyart’s (2021) model-
ing framework, this research could provide
a unique, intermediary view of the neural
architecture underlying predictive visual
processing, to complement and begin bridg-
ing the coarser views given by typical EEG
and MEG experiments, and the more fine-
grained views given by invasive single-cell
neurophysiology experiments.

When visual inputs are predictable, dif-
ferent neural dynamics may be observed
and alternative processing architectures
may be revealed. For example, it may be
necessary to consider network architec-
tures that include feedback and/or lateral
connections (and the requisite additional
spatial dimension/s), to fully account for
participants’ neural activity dynamics.
Empirically, if stimulus representations are
predictively “pre-activated” (Blom et al.,
2020), one may see increased “off-diago-
nal” generalization for temporal decoders
trained on data from unpredictable visual
sequences and tested on data from predict-
able sequences. That is, predictable stimu-
lus representations may propagate more
rapidly along the visual hierarchy than
unpredictable ones, as predictive mecha-
nisms attempt to compensate for process-
ing delays (Nijhawan and Wu, 2009).
Importantly, where novel dynamics are
observed, King and Wyart’s (2021) model-
ing framework will provide a means of
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revealing the neural architectures which
likely underlie them.

In conclusion, the work of King and
Wyart (2021) elegantly reveals howmultiple
“snapshots” of recent visual events are
simultaneously encoded along the visual hi-
erarchy. Moreover, their modeling frame-
work provides neuroimaging researchers
with a powerful tool for characterizing the
dynamical system architectures underlying
time-resolved neural recordings.
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