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Abstract 21 
 22 
A striking perceptual phenomenon has recently been described wherein people 23 
report seeing abrupt jumps in the location of a smoothly moving object (‘position 24 
resets’). Here, we show that this phenomenon can be understood within the 25 
framework of recursive Bayesian estimation as arising from transient gain 26 
changes, temporarily prioritising sensory input over predictive beliefs. From this 27 
perspective, position resets reveal a capacity for rapid adaptive precision 28 
weighting in human visual perception, and offer a possible testbed within which 29 
to study the timing and flexibility of sensory gain control. 30 
 31 
1. Introduction 32 
 33 
Accurate visual localisation of objects is critical for adaptive behaviour, both 34 
evolutionarily (e.g., targeting prey while hunting) and in modern life (e.g., 35 
navigating through traffic). However, there are instances where localisation goes 36 
awry. One of the most striking examples is the ‘double drift’ illusion, which occurs 37 
when a moving object contains internal motion in a direction orthogonal to its 38 
global trajectory (see Figure 1A; Lisi & Cavanagh, 2015). Under such conditions, if 39 
the object is viewed peripherally, extreme mis-localisations can occur.  40 

Recently, it has been shown that the double drift illusion can be reset, such 41 
that people report seeing the object abruptly jump back toward its true position 42 
(Nakayama & Holcombe, 2020). These ‘position resets’ can be triggered by visual 43 
transients near the object and/or may occur spontaneously (‘t Hart, Henriques, & 44 
Cavanagh, 2022). When asked to draw the (linearly moving) object’s trajectory, 45 
participants draw a zig-zag shaped path (see Fig 1B).  46 

Currently, the cause of position resets is unknown. One high-level account 47 
suggests that shifts of attention may somehow reset the perceived position of the 48 
object back to its veridical position (Nakayama & Holcombe, 2020). However, a 49 
computationally-rigorous account of this phenomenon is lacking, and the question 50 
of why attention might drive resets has not been addressed. 51 

Here, we consider this phenomenon from the perspective of recursive 52 
Bayesian estimation, where perception is viewed as an unfolding inference 53 
process in which sensory inputs are combined with internally generated 54 
predictions, to derive more precise estimates of world states (e.g., an object’s 55 
position and speed). From this perspective, we show that position resets can arise 56 
from transient gain changes which temporarily prioritise sensory input over 57 
predictive beliefs. 58 
 59 
2. Model and Results 60 
 61 
We simulated an object-tracking model previously used to account for a variant of 62 
the double drift illusion (the “curveball illusion”; for full model details see linked 63 



 3 

code and Kwon et al., 2015). At its core is a generative model of motion dynamics 64 
(i.e. the laws of motion) used to derive predictions about current world states. 65 
That is, predictions are made about the current position and velocity of an object 66 
given its past state. These are integrated with noisy sensory inputs to derive more 67 
precise state estimates. This process takes the form of a Kalman Filter which is 68 
optimal under the assumption of gaussian noise (Kalman, 1960). 69 
 70 

Figure 1. Accounting for ‘position resets’ in the double-drift illusion. A) When 71 
viewed peripherally, a diagonally moving Gabor stimulus can appear to travel 72 
along a vertical path if its internal pattern (phase) moves in an orthogonal 73 
direction. B) With brief flashes near the Gabor, participants report seeing abrupt 74 
‘position resets’, such that the stimulus appears to move along a zig-zag shaped 75 
path. Panels show hand-drawn stimulus trajectories from two participants viewing 76 
double-drift stimuli with (right) and without (left) transient flashes (Nakayama & 77 
Holcombe, 2020). With flashes, an abrupt kink can be seen midway through the 78 
trajectories indicating that participants saw the stimulus jump back toward its true 79 
position. C) A Bayesian object-tracking model (Kwon et al., 2015) gives a principled 80 
account of this effect. Transient gain modulations (modelled via a log-normal 81 
function with varying amplitude) drive the rapid re-weighting of inputs and 82 
predictions within the model, resulting in a zig-zag shaped trajectory estimate. 83 
Black diagonal lines indicate the true stimulus trajectories, blue lines show model 84 



 4 

estimated trajectories under no gain modulation, and orange lines show model 85 
estimated trajectories under gain modulations of varying amplitude.  86 
 87 

In the present simulations, we examined the effect of transient gain 88 
modulations on model-derived object trajectory estimates. Here, ‘gain’ refers to 89 
the weight given to incoming sensory information over predictive beliefs in 90 
determining the final state estimate. With higher gain, inputs are prioritised over 91 
predictions, and vice versa. Within the model, gain is calculated at each time point: 92 

 93 
K = PHT(HPHT + R)-1 + M 94 

 95 
where P is the state covariance matrix, H is the observation matrix, R is the 96 
measurement noise covariance matrix, and M is an additive gain modulation 97 
matrix. To implement gain modulations, from 900 ms after stimulus onset we 98 
varied the diagonal of this matrix according to a log-normal function with varying 99 
amplitude (Figure 1C). Simulating modulations of varying strength, we found that 100 
transient gain modulations induced position resets. Stronger modulations 101 
triggered more abrupt resets, with model trajectory estimates qualitatively 102 
mirroring those from Nakayama and Holcombe (2020). 103 

MATLAB and Python code for recreating these simulations is available at: 104 
https://github.com/bootstrapbill/position-reset-model. 105 
 106 
3. Discussion 107 
 108 
We have given a computational account of ‘position resets’ in visual localisation 109 
(Nakayama & Holcombe, 2020). Through the lens of recursive Bayesian 110 
estimation, we have shown that resets can arise from gain modulations which 111 
temporarily prioritise sensory inputs over predictive beliefs. From this perspective, 112 
position resets reveal a capacity for rapid adaptive ‘precision weighting’ (Yon & 113 
Frith, 2021) in human visual perception.  114 

Importantly, the current model is agnostic to the cause of gain changes. At 115 
least two hypotheses warrant investigation. First, attention shifts (either bottom-116 
up or top-down) may ‘sharpen’ incoming sensory information (Nakayama & 117 
Holcombe, 2020). With increased precision, these inputs will be upweighted 118 
relative to predictions, triggering a reset. Second, abrupt visual transients may 119 
trigger a reduction in the precision of internally generated predictions (e.g., 120 
‘something has changed, so my predictions may no longer hold’). This too would 121 
lead to the prioritisation of inputs over predictions, and thus a reset. (For proof-122 
of-principle simulations of these accounts see linked code.)  123 

These accounts may not be mutually exclusive and could be further tested 124 
by examining whether resets are preceded by a sharpening of neural object 125 
position representations (Turner et al., 2023; Turner et al., 2024; Yon et al., 2018). 126 
As a general test of this perspective, studies could examine whether manipulations 127 
which increase sensory uncertainty (visual noise) can cancel out/prevent resets. If 128 
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this is possible, this would support the core idea that the relative precision of 129 
inputs and predictions ultimately determines their perceptual influence. With 130 
further support for this account, studies may also investigate the neurochemical 131 
basis of gain modulations. For example, by testing whether specific 132 
pharmacological interventions can inhibit/disrupt resets (Moran et al., 2013), or 133 
by studying pupil-linked arousal dynamics during spontaneous resets (‘t Hart et al., 134 
2022).  135 
 If resets reflect rapid precision weighting, then individual variability in this 136 
phenomenon should be examined. For example, studies could test whether 137 
certain clinical populations are resistant to experiencing resets, as this may be 138 
indicative of reduced perceptual flexibility – i.e., a ‘stubborn’ perceptual 139 
experience. Relatedly, individual differences in the double drift illusion have been 140 
observed to correlate with individual differences in the ‘twinkle goes’ and ‘flash 141 
grab’ illusions, suggesting they may share underlying mechanisms (Cottier et al., 142 
2023). Future studies may therefore attempt to account for these illusions within 143 
the present framework. As a speculative example, in the twinkle goes illusion an 144 
increased reliance on predictions in the face of highly uncertain input (due to 145 
dynamic noise) may drive the lingering percept of the stimulus.  146 

In sum, we have shown that ‘position resets’ can arise from transient gain 147 
changes, suggesting a capacity for rapid dynamic precision weighting in human 148 
visual perception. Future studies may further examine this phenomenon to better 149 
understand the temporal dynamics of sensory gain control.  150 
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