
1 
 

Multivariate pattern analysis of event-related potentials predicts the subjective 
relevance of everyday objects 

 

William Francis Turner1, Phillip Johnston1, Kathleen de Boer1, Carmen Morawetz2, 

& Stefan Bode1* 

 

1 Melbourne School of Psychological Sciences, The University of Melbourne, Parkville 3010, 
Victoria, Australia 

2 Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee 
45, 14195 Berlin, Germany 

 

 

 

*Corresponding Author: Stefan Bode 

Email: sbode@unimelb.edu.au 

  



2 
 

Abstract 

Potentially decision-relevant stimuli have been proposed to undergo immediate semantic 
processing. The current study investigated whether information regarding the general 
desirability (‘Wanting’) of visually presented ‘everyday’ objects was rapidly and 
automatically processed. Participants completed a foreground task while their 
electroencephalogram (EEG) was recorded, and task-irrelevant images were presented in the 
background. Following this, participants rated the images with regards to Wanting and the 
potentially related attributes of Relevance, Familiarity, Aesthetic Pleasantness and Time 
Reference. Multivariate pattern classification was used to predict the ratings from patterns of 
EEG data. Prediction of Wanting and Relevance was possible between 100-150 ms following 
stimulus presentation. The other dimensions could not be predicted. Wanting and Relevance 
ratings were highly correlated and displayed similar feature weight maps. The current results 
suggest that the general desirability and subjective relevance of everyday objects is rapidly 
and automatically processed for a wide range of visual stimuli.  
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1. Introduction 

 There is now a large body of research suggesting that many unconscious factors can 
influence decision outcomes (Custers & Aarts, 2010). These factors include simple biases of 
previous choices in arbitrary decision scenarios (Bode et al., 2014b) as well as more complex 
biases in financial decisions, exerted, for example, by incidental rewarding stimuli on 
decisions between small immediate rewards and larger delayed rewards in intertemporal 
choice (e.g., Kim & Zauberman, 2013; Murawski et al., 2012; Simmank, et al., 2015; Wilson 
& Daly, 2004; Van den Bergh, et al., 2008; Zhong & Devoe, 2010). In general, the presence 
of rewards, specific social situations, and (subliminal) priming has been shown to play a role 
in biasing decision outcomes in a variety of situations, outside the awareness of the decision-
maker (Aarts et al., 2007; Custers & Aarts, 2010; Dijksterhuis & Aarts, 2010; Zedelius et al., 
2014).  

How these unconscious biases are generated is, however, still debated. For example, 
with intertemporal choices it might be plausible that any positive stimulus in the environment 
activates neural reward circuits, increasing the likelihood of reward seeking behaviour in a 
subsequent decision task. In support of this, many studies have found that images of 
rewarding objects, such as brand logos (Murawski et al., 2012; Zhong & Devoe, 2010), 
sexual cues (Van den Bergh et al., 2008; Wilson & Daly, 2004), or food and status symbols 
(Simmank, et al., 2015) can bias decision-makers towards immediate gratification. However, 
others have shown that decision-makers can also be biased towards delayed gratification 
(Benoit et al., 2011; Cheng et al., 2012; Peters & Büchel, 2010), suggesting a more complex 
mechanism.  

Given the variety of cues that have been shown to bias decision-making and goals 
(Custers & Aarts, 2010), one possibility is that stimuli which exert such biases derive their 
impact from a higher-level semantic analysis. A recent study by Bode and colleagues (2014a) 
made an initial step towards testing this proposal by exposing participants to a variety of 
positively valenced stimuli (similar to those found to influence intertemporal decisions in 
previous studies) using a passive viewing paradigm with an attention-demanding foreground 
task. Following this task, participants were asked to rate all images with regards to whether 
they were felt to be subjectively related to the present or the future (a stimulus attribute 
termed ‘Time Reference’). It was shown that these ratings could be predicted successfully 
from distributed patterns of event-related potentials (ERPs) recorded during passive viewing, 
despite the fact that, whilst initially viewing the images, the participants were unaware that 
they would be required to subsequently rate them. This finding supports the assumption that a 
fast and automatic analysis of semantic stimulus features takes place. Importantly, such an 
analysis might not only explain carry-over effects on incidental decision processes (e.g. 
intertemporal choice), but might also facilitate everyday decision-making for the analysed 
objects themselves by preparing unconscious shortcuts which streamline the decision-making 
process (Bode et al., 2014a; Creswell et al., 2013; Dijksterhuis et al., 2006a,b).  

For this to be true, several aspects of stimuli would have to be automatically 
processed, integrated, and made available as a general decision-related signal to the decision-
maker. Several studies using functional magnetic resonance imaging (fMRI) have 
investigated whether categorical stimulus attributes other than Time Reference are 
represented in brain activity directly following stimulus presentation. For example, 
O’Doherty and colleagues (2003) demonstrated that when individuals were presented with 
images of faces, brain activity was predictive of subsequent attractiveness ratings, even 
though the experimental task was to judge gender. Others have shown that the processing of 
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stimuli on a category level occurred rapidly following the presentation of a natural scene, 
even though the scene was unattended and irrelevant to the experimental task (Peelen et al., 
2009). Brain activity has also been found to be systematically modulated according to 
individual preferences for specific stimuli, even when attention was directed away from the 
stimuli (Lebreton et al., 2009; Tusche et al., 2010; 2013). However, given the poor temporal 
resolution of fMRI, it remains unclear how rapidly the suggested processes took place. A 
number of studies have used electroencephalography (EEG), and its relatively superior 
temporal resolution, to demonstrate that semantic stimulus attributes, such as basic category 
information (e.g. cars vs. buildings), is rapidly reflected in brain activity following 
presentation of visual objects (Simanova et al., 2010; Taghizadeh-Sarabi et al., 2015; Wang 
et al., 2012).  

Crucially, information regarding Time Reference as well as category membership is 
not necessarily directly relevant to object-related decision making. Therefore, the results from 
previous studies provide insufficient evidence that information of direct relevance for 
decision-making is rapidly and automatically processed following exposure to a visual 
stimulus. Notably, there is some evidence that people’s choices for consumer products can be 
predicted from their brain activity recorded during passive viewing of the products (Levy et 
al., 2011; Telpaz et al., 2015; Tusche et al., 2010). For example, an fMRI study, which 
measured brain activity during passive exposure to images of cars, demonstrated that 
hypothetical purchase decisions could be directly predicted from patterns of brain activity in 
decision-related brain regions such as the medial prefrontal cortex and insula (Tusche et al., 
2010). However, these results were obtained in a sample of participants who indicated a high 
interest in cars prior to the experiment. Thus, these stimuli were highly valenced for the 
selected sample. Similarly, previous studies have typically used highly valenced and 
optimised stimuli (e.g., Bode et al., 2014a; Levy et al., 2011; Telpaz et al., 2015), which had 
a high likelihood of being relevant for decision-making. For example, the stimuli used by 
Bode and colleagues (2014a) were positively valenced and were selected on the basis that 
they strongly related to the present or the future (i.e. they were optimised for the Time 
Reference dimension). While this approach is valid and arguably helpful for optimising the 
probability of detecting the neural signatures of these processes, it also bears the danger of 
communicating a distorted picture of stimulus processing for decision-making. In fact, it 
could imply that all stimuli are unconsciously processed in great semantic depth, or that 
detailed purchase decisions are always prepared unconsciously for incidentally encountered 
objects in the environment. However, the question remains as to whether the automatic 
extraction of decision-relevant information also takes place for more ‘everyday’ objects, 
which have not been optimised in this manner. One possibility is that in-depth semantic 
processing first requires the detection of relevance or a general desire towards this object, and 
that any further processing is abandoned if the object does not fulfil these criteria. As 
suggested for early visual processing (Felsen & Dan, 2005) as well as social stimuli (Zaki & 
Ochsner, 2009), processing of naturalistic stimuli might indeed differ substantially from 
optimised stimuli. 

The current study addressed this question by exposing participants to a selection of 
object images drawn from a novel picture set, the Nencki Affective Picture System (NAPS; 
Marchewka et al., 2014), for which normative ratings for valence, approach/avoidance and 
arousal were available. Notably, these images fell into a variety of categories, did not depict 
consumer products, and varied highly across normative valence ratings. As such, they were 
more representative of objects encountered in everyday life than the stimuli used in previous 
studies. We then asked whether the general desirability of these objects could still be 
predicted from brain activity shortly after stimulus presentation, despite having waived the 
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characteristic of high valence. Moreover, following previous studies (Bode et al., 2014a; 
Tusche et al., 2010) we made the stimuli task-irrelevant by presenting them in the 
background while participants focussed on a foreground task. This corresponded closely to 
everyday scenarios in which objects are perceived incidentally, and are not the focus of direct 
attention or deliberation.  

There are many ways to characterise the general desirability of, or tendency to be 
drawn towards, an object, including: preferences (Lebreton et al., 2009), approach motivation 
(Harmon-Jones & Allen, 1998), utility (Fishburn, 1970), and valence (Mogg et al., 2003). 
However, most of these concepts are not easily applied to everyday stimuli, which are not in 
fact owned (or can be owned) by an individual. They also do not adequately capture the 
intuitive concept of a general desire to ‘want’ or have/own/interact with an object that could 
be the result of a fast and automatic aggregated semantic analysis of decision-relevant 
stimulus features. Hence, for the sake of this study, this decision-relevant aggregate concept 
was simply termed ‘Wanting’, which is an intuitive terminology which our participants 
indicated they understood. The concept of Wanting has been used in addiction- and food-
related research to refer to the implicit desire of a rewarding stimulus that is distinct from the 
hedonic impact, or ‘liking’, of the stimulus (Berridge et al., 2009). In the current study, 
participants made explicit Wanting judgements; thus, the definition of Wanting used here 
differs slightly from that which is typically used in addiction research. However, it is noted 
that the concept of explicit Wanting has also been used in a number of previous studies (e.g., 
Finlayson et al., 2008). Due to practical constraints, the current study did not attempt to fully 
unpack which single stimulus features were integrated when forming aggregate Wanting 
judgements. We did, however, include four additional stimulus attributes, which might 
plausibly influence Wanting judgements and have been suggested to be processed pre-
attentively and automatically: Relevance (Sander et al., 2003), Familiarity (Wang, et al., 
1994), Aesthetic Pleasantness (Kühn & Gallinat, 2012; O’Doherty et al., 2003), and Time 
Reference (Bode et al., 2014a). The latter provided a test of whether the findings by Bode and 
colleagues (2014a) would replicate for everyday stimuli, which were not optimised for this 
dimension. Crucially, participants were only asked to explicitly rate the stimuli with regards 
to these attributes following initial stimulus exposure. Thus, they were not primed in any way 
to evaluate the stimuli with regards to these attributes.  

Following Bode and colleagues (2014a), we used multivariate pattern analysis 
(MVPA; Blankertz et al., 2011; Bode et al., 2012; King & Dehaene, 2014; Philiastides & 
Sajda, 2006), optimised for event-related potential data (Bode et al., 2012; Bode & Stahl, 
2014), to directly predict the participants’ ratings from spatially distributed activity patterns 
within the first few hundred milliseconds following stimulus presentation. This approach has 
been shown to be sensitive to even subtle decision-related information, which cannot be 
detected using conventional methods (e.g., Bode et al., 2012; 2014a). The second advantage 
of MVPA is that it allows for a (spatially and temporally) unbiased search for this 
information that does not rely on a priori knowledge of specific neural generators or 
components of the event-related potential linked to these dimensions. MVPA involves 
training a classifier (a pattern classification algorithm) to distinguish between patterns of 
brain activity associated with different experimental variables of interest (here the ratings for 
each dimension). Successful prediction provides evidence that the respective information of 
interest is represented in brain activity patterns during distinct analysis time windows. 
Finally, in addition to attempting to predict the ratings, we also related them to the NAPS 
normative ratings for valence, arousal and approach/avoidance. 
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It was hypothesised that it would be possible to predict participants’ subsequent 
subjective Wanting ratings from patterns of brain activity recorded during the presentation of 
non-optimised, task-irrelevant everyday objects. Additionally, we investigated whether 
information regarding stimulus Relevance, Familiarity, Aesthetic Pleasantness and Time 
Reference was also represented, and how these representations might have contributed to an 
integrated neural Wanting-signal. 

 

2. Materials and methods 

2.1 Participants 

Twenty-five right-handed students from the University of Melbourne, Australia, 
fluent in English and with normal or corrected to normal vision, gave written informed 
consent and were compensated with AUD 20 for their time. Three data sets had to be 
discarded due to excessive skin potential artifacts in the EEG. The final sample consisted of 
22 participants (mean age = 21.7 years, range = 18-34 years; 16 females). The experimental 
procedures were approved by the ethics committee of the University of Melbourne (ID 
1443258). 

2.2 Stimuli and apparatus 

Fifty images of objects were selected from the Nencki Affective Picture System 
(NAPS; Marchewka et al., 2014) based on category membership and normative NAPS 
ratings. First, for standardisation purposes, all vertically oriented images were rejected from 
the 329 available object images. The remaining 253 images were sorted into 17 semantic 
categories (vegetables, meat, drinks, other foods, cars/trucks, bicycles/motorcycles, 
boats/planes/trains, toys, weapons/tools, rubbish, electronics, bottles/glass, bathroom items, 
kitchen items, shoes, sculptures/art, and miscellaneous). Then, 50 items were selected based 
on an algorithm that sampled ~3 images from each category such that one item each was of 
low, medium and high valence, respectively (see Supplement A for list of chosen items and 
their normative ratings). Note that unlike in previous studies, images were not all highly 
valanced, were not optimised for a specific rating dimension (Bode et al., 2014a), nor were 
they explicit consumer products (e.g., Tusche et al., 2010). Each image was resized to 600 x 
450 pixels for the experiment.  

The experimental task was presented on a Dell P2210 LCD monitor, with a resolution 
of 1680 x 1050 pixels and a frame rate of 60 Hz, using Psychtoolbox (Matlab R2012b; 
Brainard, 1997). Participants were seated with their chin on a chinrest approximately 50 cm 
from the computer monitor such that the images subtended 18.07° x 13.57° of visual angle. 

2.3 Experimental procedures 

On each trial, a central fixation box (22 x 22 pixels; 0.69° x 0.69° of visual angle) was 
shown on a grey background for 2-3 s (drawn from a uniform distribution). Following this, an 
image was presented in the background for 3.2 s while the fixation box constantly remained 
on the screen. Image presentation was again followed by another jittered fixation-only period 
(2-3 s) before the next image was shown. Each image was presented three times (a total of 
150 trials) in an individually randomised order. Participants were given a break at the 
halfway point. 
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Participants were asked to monitor the fixation box, which would fill into a solid 
black square (after a 1-2 s delay following image presentation; delays were normally 
distributed) on randomly selected trials in 30% of all trials (see Figure 1). Participants were 
instructed to press the space bar (on a standard computer keyboard) immediately after the box 
filled. This task was designed to render the images task-irrelevant and prevent uneven 
allocation of attention, in line with previous studies, which used similar but slightly more 
demanding foreground tasks (e.g., Bode et al., 2014a; Tusche et al., 2010).  

After the experiment, participants completed a computer-based image-rating task in 
which the same 50 images were rated on 9-point scale (1 = not at all, 9 = very much / 1 = 
past, 9 = future) with respect to Wanting (“How much do you want this object?”), Relevance 
(“How relevant is this image to you personally?”), Familiarity (“How familiar is this object 
for you?”), Aesthetic Pleasantness (“How aesthetically pleasant is the image for you?”), and 
Time Reference (“Is this item for you related to the past or the future?”). The order in which 
images and questions were presented was again randomised. Crucially, whilst viewing the 
images during the experiment, participants were neither aware of this subsequent rating task, 
nor of the attributes which they would be asked about. 

2.4 EEG data recording and processing 

During the experiment, EEG activity was recorded using 64 Ag/AgCl electrodes (Fp1, 
Fpz, Fp2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, 
FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, 
CPz, CP2, CP4, CP6, TP8, P9, P7, P5, P3, P1, Pz, P2, P4, P6, P8, P10, PO7, PO3, POz, PO4, 
PO8, O1, Oz, O2, Iz) interfacing a Biosemi Active-II system running ActiView acquisition 
software. The electrodes were attached to a Biosemi fabric cap according to the international 
10-20 system. The EEG was continuously recorded at a sampling rate of 512 Hz. An implicit 
reference was used during recording, and all channels were re-referenced off-line against the 
average of two electrodes placed on the mastoid bones. Further external electrodes were 
placed below and next to the left eye to record the vertical and horizontal electrooculogram.  

Data were pre-processed in Matlab R2012b using the EEGLAB Toolbox (Delorme & 
Makeig, 2004). A standard 0.1 to 70 Hz band-pass filter was applied, and a 50 Hz notch filter 
was used offline to remove electrical line noise. The data were divided into epochs ranging 
from 100 ms before to 600 ms after presentation of each stimulus. The 100 ms period before 
stimulus presentation was used as the baseline. Epochs containing muscle movements and 
skin potentials were removed after visual screening. Channels with poor quality data were 
visually identified and corrected using spline interpolation. An independent-components 
analysis (ICA) was performed to identify and remove components related to eye-blinks and 
eye-movements. A stricter visual rejection of artifacts followed in which all epochs with 
amplitudes exceeding ± 500 µV were excluded. Finally, a standard current source density 
(CSD) analysis was conducted at each of the electrode sites using the CSD toolbox (Kayser 
& Tenke, 2006). This analysis involves calculating the second derivative of the distribution 
of the voltage over the scalp (Perrin et al., 1987; 1989), and has been shown to benefit 
support vector machine (SVM) classification of ERPs (Bai et al., 2007; Bode et al., 2012; 
2014a; Bode & Stahl, 2014). 

2.5 Multivariate Pattern Analysis (MVPA) of ERP data 

Due to the non-normal distributions of participants’ ratings for single dimensions, 
there was not sufficient variance to allow for a regression approach of specific rating values 
using multivariate support vector regression (SVR) analysis (as conducted in Bode et al., 
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2014a; see Supplement B for individual rating distributions). Consequently, ratings were 
converted to a binary score (‘high’, ’low’) relative to the group median for the particular 
attribute being analysed. A linear SVM classification approach (Bode et al., 2012; Bode & 
Stahl, 2014) was then used to predict these scores from distributed patterns of ERP data 
(Figure 2). To avoid potential sample size biases due to different numbers of trials, all 
analyses were based on a balanced number of trials associated with ‘low’ and ‘high’ ratings, 
randomly chosen from all available trials for each participant (Bode et al., 2014a; Bode & 
Stahl, 2014). Participants who had less than 20 trials relating to either ‘low’ or ‘high’ ratings 
for a particular attribute were excluded from the respective analysis. This means, separated 
by dimension, we included on average: Wanting 60.95 trials (range 20-100), Relevance 72.63 
trials (range 20-120), Aesthetic Pleasantness 77.0 trials (range 40-120), Familiarity 71.0 trials 
(range 20-120), and Time Reference 87.62 trials (range 60-120). 

We analysed the 100 ms of data pre-stimulus (as a neutral baseline) and the 600 ms 
following stimulus onset using 20 ms analysis time windows, which were moved through the 
data using a sliding-window approach with 10 ms step-size (Figure 2). For each step, the data 
from all channels within the 20 ms analysis time window were transformed into vectors 
representing the spatio-temporal activity patterns and sorted into trials corresponding to 
images with ‘high’ or ‘low’ post-experimental ratings. Data from both trial types was then 
randomly sorted into ten sets of equal size. A linear SVM classifier (as implemented by the 
LIBSVM Toolbox, Chang & Lin, 2011; standard regulation parameter C = 1) was trained on 
90% of the data (9 sets) and estimated a decision hyperplane/boundary for the classification 
of ‘high’ and ‘low’ rated objects. The estimated decision boundary was then used to classify 
the vectors of the remaining 10% of the data (1 set) as either ‘high’ or ‘low’. This process 
was repeated using a 10-fold cross-validation procedure, using each set as the test data set 
once while the classifier was independently re-trained on data from the remaining 9 sets. To 
rule out any potential drawing biases, a conservative accuracy estimation approach was taken, 
and the entire cross-validated classification procedure was itself repeated ten times (Bode et 
al., 2014a; Bode & Stahl, 2014). The classification accuracy for each analysis time window 
(i.e. the accuracy with which the recoded binary ratings could be predicted) was obtained by 
averaging the results from these 100 analyses. Independent analyses were performed for each 
participant, and again separately for each rating dimension. Thus, each participant’s 
individual CSD-EEG data were separately used for training the SVM classifier and for testing 
for each analysis. 

Statistical testing (T-tests) at group level (independently conducted for each rating 
dimension) was performed by comparing the classification accuracy to an empirical chance 
distribution instead of the theoretical chance level, which has been criticised recently as too 
lenient (Combrisson & Jerbi, 2015). The empirical chance distribution was obtained by 
repeating the classification procedure exactly as outlined above, but with the labels (‘high’ or 
‘low’) randomly shuffled before classification. Any systematic biases in the data would 
therefore also affect the chance distribution, further decreasing the probability of false 
positive results. Statistical testing was carried out separately for each time window and a 
cluster-based correction for multiple comparisons was applied (1000 permutations, alpha 
level of 0.05; Bullmore et al., 1999; Maris & Oostenveld, 2007). This correction tests for 
above chance classification across clusters of time-points and involves summing the t-statistic 
across consecutive time windows, which showed statistically significant decoding. These 
summed values (cluster masses) are then compared against a distribution of cluster masses 
generated from permutation samples of decoding accuracies (see Maris & Oostenveld, 2007). 
Critically, we chose this correction method as it has been shown to be sensitive to small, 
temporally sustained effects (Grootswagers et al., 2016), thus, it enabled us to test for 
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sustained information in the EEG data that was predictive of participants’ ratings. In addition 
to testing significance at single time-points, we tested for significant differences across 50 ms 
time windows as another measure for sustained predictive information within the EEG data. 
Finally, the absolute and z-standardised feature weights were extracted for each successful 
analysis time window, averaged across all single time points within each analysis window 
(note that single feature weights for all 2 ms time points within analysis windows would be 
impossible to interpret), and assigned to each channel. This resulted in one value for each of 
the 64 channels, representing a rough estimate of their importance for the classification. Note 
that these maps were not interpreted as the ‘source’ (or origin) of this information (for a 
critique of this approach see e.g., Haufe et al., 2014), but merely obtained to compare 
similarities of successful classification between rating dimensions.  

2.6 Control Analyses 

2.6.1 Low-level visual image features 

To ensure that participants’ ratings (and potentially their successful prediction) did 
not simply reflect low-level visual properties of the images, the relationships between seven 
low-level features of the images, provided by the NAPS, and the participants’ ratings were 
assessed (c.f. Bode et al., 2014a). The low-level features were: a) luminance, defined as the 
average pixel value for the images, b) contrast, defined as the standard deviation across pixels 
for the images, c) JPEG size and entropy, both used as indices of image complexity, and e) 
the three dimensions of the CIE L*a*b* colour space referred to as LABL, LABA, and 
LABB (Marchewka et al., 2014), which indexed the colour composition of the images. The 
relationships between these low-level parameters and the participants’ ratings were 
investigated by correlating the parameter values and the mean rating values for each image 
for each dimension. Since participants’ ratings were not normally distributed, non-parametric 
Spearman’s correlations were used in all analyses. 

2.6.2 Normative ratings 

Additionally, the relationships between participants’ ratings and the valence, 
approach/avoidance and arousal normative ratings provided by the NAPS were assessed. 
Note that given the large number of images used in this study, it was not possible to obtain 
individual ratings on these dimensions, but the use of the normative ratings allowed for an 
approximated assessment of these relationships. Spearman’s correlations were again used in 
all analyses.  

 

3. Results 

3.1 Performance on foreground task 

Participants responded with high accuracy to the box filling task (M = 98.76%, SE = 
.67; two trials excluded in total due to technical problems with recording the button press). 
The average response time across participants was 435 ms (SD = 139). The high average 
accuracy suggests that participants performed the task correctly, and that attention was 
maintained across the task and was independent of the category of the background stimuli. 

3.2 Image ratings 
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Ratings for all dimensions were relatively skewed and not normally distributed for 
many participants (see Supplement B). Descriptive statistics for all dimensions are provided 
in Table 1. For MVPA, ratings were converted into binary scores according to whether or not 
they fell above or below the (group level) median for the attribute being analysed (see section 
2.5).  

 

Table 1 
 
Means, Medians and Standard Deviations (SD) for the participants’ ratings 
Stimulus Attribute Mean Median SD 
Wanting 3.12 2 2.45 
Relevance 3.46 3 2.29 
Familiarity 4.82 5 2.73 
Aesthetic pleasantness 4.03 4 2.63 
Note. A 9-point scale (1 = not at all, 9 = very much) was used for all dimensions. 

 

3.3 Multivariate pattern analysis of ERP data 

A linear SVM classifier was used to predict participants’ post-experimental ratings 
(following conversion into binary ‘high’ and ‘low’ values) for the images from the single-
trial spatio-temporal patterns of their EEG data.  

Wanting ratings (N = 16 participants) could be predicted significantly above chance 
between 100 – 150 ms following stimulus presentation (Figure 3). Similarly, Relevance 
ratings (N = 19) could be predicted significantly above chance during the same time period 
(Figure 4). When we analysed single time windows, wanting ratings could not be predicted 
significantly above chance following cluster-based correction for multiple comparisons. 
However, Relevance ratings could be predicted significantly above chance during 90 – 130 
ms following stimulus presentation. Finally, the classification accuracies for Familiarity (N = 
18), Aesthetic Pleasantness (N = 20) and Time Reference (N = 21) were again not 
significantly different from the empirical chance distribution across any of the time windows 
(Figure 5).  

Additionally, we repeated the classification analyses using different analysis window 
widths (10 ms, 40 ms), different step sizes (20 ms, 40 ms), and alternative approaches to 
converting ratings into binary variables (e.g., above and below scale midpoint, or excluding 
mid-range ratings) but these analyses did not improve classification accuracy and are not 
reported here. 

3.4 Relationship between Wanting and Relevance ratings 

One possible interpretation of the high similarity of classification time-courses for 
Wanting and Relevance was that these two concepts were strongly inter-related for 
participants. To test this, we analysed the Spearman’s correlations between average Wanting 
ratings and Relevance ratings. For 15 of the 50 images, these correlations were significant 
after Bonferroni-correction (median r  = .53, range: .01 to. 88; see Supplement C for full 
results). When calculated separately for each participant, the correlations for Wanting and 
Relevance ratings across images for 20 of the 25 participants showed significant positive 
correlations after Bonferroni-correction (median r = .54, range: .15 to .88; see Supplement D 
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for full results). These results provided evidence that participants’ assessment of the 
Relevance and general desirability of an object were inter-related. 

 Given these results, we additionally visually assessed the similarity between the z-
standardised absolute feature weight maps for Wanting and Relevance classification, 
averaged across 100-150 ms following stimulus onset (see Figure 6). While these maps 
cannot be used to determine with certainty the sources of predictive information (Haufe et al., 
2014), their high similarly nevertheless suggests at least similar neural generators for the 
predictive signals for both dimensions. 

3.5 Control analyses 

3.5.1 Low-level visual image features 

No significant correlations were found between any of the low-level image features 
and the average Wanting and Relevance ratings across images (Table 2). Furthermore, no 
significant correlations were found between individual participant ratings and any of the low-
level image features (see Supplement E for full results). These results suggest that ratings 
(and the classification thereof) were not driven by simple visual properties of the images. 

 

Table 2 
 
Correlations between mean Wanting and Relevance ratings and the seven low-level stimulus 
features 
Low-level feature Wanting            Relevance  

rs p rs p 
Luminance .05 .75 .11 .46 
Contrast -.15 .30 -.23 .11 
JPEG size -.09 .55 -.13 .37 
LABL .06 .69 .13 .37 
LABA .10 .51 .12 .42 
LABB -.04 .77 .02 .91 
Entropy .05 .72 .13 .37 
Note. rs = Spearman’s rho; p = uncorrected significance level 

 

3.5.2 Normative ratings 

Next, we assessed the relationship between the rating dimensions, which could 
successfully be predicted from patterns of ERPs, and the normative image ratings provided in 
the NAPS. Using Spearman correlation analyses, it was found that average Wanting ratings 
were significantly positively correlated with valence (r = .84, p < .001) and 
approach/avoidance (r = .83, p < .001), and negatively correlated with arousal (r = -.59, p < 
.001). Similarly, Relevance ratings were significantly positively correlated with valence (r = 
.67, p < .001) and approach/avoidance (r = .58, p < .001) and negatively correlated with 
arousal (r = -.52, p < .001).  

Correlations between individual participants’ ratings and valence, approach/avoidance 
and arousal normative ratings were also assessed (all Bonferroni-corrected for multiple 
comparisons; see Supplement F). For the Wanting ratings, 20 participants showed significant 
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positive correlations with valence ratings, 18 participants showed significant positive 
correlations with approach/avoidance ratings, and 9 participants showed significant negative 
correlations with arousal normative ratings. Similarly, for the Relevance ratings, 10 
participants showed significant positive correlations with valence normative ratings, 7 
participants showed significant positive correlations with approach/avoidance, and 3 
participants showed significant negative correlations with arousal normative ratings. 

These results provide evidence of substantial associations between Wanting and 
valence, approach/avoidance and arousal. The same was found for Relevance, although it is 
noted that these associations were less pronounced. 

 

4. Discussion 

Using MVPA for ERPs, we investigated whether information relating to the general 
desirability of task-irrelevant, ‘everyday’ object stimuli was automatically processed in the 
hundreds of milliseconds following their background presentation. It was found that 
‘Wanting’ and ‘Relevance’ ratings could be predicted significantly above chance from 
distributed patterns of brain activity between 100-150 ms following stimulus presentation. 
‘Familiarity’, ‘Aesthetic Pleasantness’, and ‘Time Reference’ ratings could not be predicted. 
Following cluster-based correction for multiple comparisons ‘Relevance’ ratings could be 
predicted significantly above chance in consecutive single time windows, yet ‘Wanting’ 
ratings could not. Further, Wanting and Relevance ratings were highly correlated and 
displayed highly similar feature weight maps. Ratings for these two dimensions also showed 
substantial associations with all three normative dimensions of the images: valence, 
approach/avoidance and arousal.  

4.1 Fast and automatic processing of subjective stimulus Relevance 

 The fact that participants’ Relevance ratings could robustly be predicted from 
distributed patterns of their brain activity during an early stage of stimulus processing 
suggests that information relating to the subjective relevance of stimuli was rapidly and 
automatically processed, even more so than Wanting. While we have no direct evidence for 
the claim that this semantic analysis was truly automatic and pre-conscious, several aspects of 
the study design and results support such an interpretation. First, participants were unaware 
that they would have to rate the stimuli with regards to Relevance and Wanting until after the 
experimental task (i.e. when their brain activity had already been recorded). Hence, they were 
not primed in any way to appraise the stimuli with regards to this dimension. Second, 
prediction of Relevance (and to some extent Wanting) ratings was possible around 100 ms 
after stimulus onset, supporting the idea that this reflected an early processing stage, 
preceding potentially more in-depth semantic analyses dependent on feedback-loops. It is 
therefore unlikely that the processing of such information resulted from conscious 
deliberation, but could instead reflect the fast extraction of the semantic ‘gist’ of the visual 
environment (Oppermann et al., 2011). Finally, participants responded with high accuracy to 
the foreground attention task. Whilst this cannot unequivocally establish that attention 
remained centrally fixated throughout the task, especially since the attention task only 
required responses on 30% of trials and was less demanding than in previous studies (e.g., 
Bode et al., 2014a; Tusche et al., 2010), it nevertheless suggests that the processing of 
predictive information did not result from conscious deliberation on the behalf of the 
participants. This is further supported by the fact that the images were truly task-irrelevant. 
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The claim that participants appear to have automatically processed object information 
is consistent with previous research suggesting that high-level stimulus attributes were 
encoded in brain activity even when participants did not consciously attend to the stimuli or 
were unaware of the attribute of interest (Bode et al., 2014a; Lebreton et al., 2009; Peelen et 
al., 2009; Simanova et al., 2010). In particular, our results extend a number of past EEG 
studies, which found that specific semantic stimulus attributes (Bode et al., 2014a) and 
category membership (Simanova et al., 2010; Taghizadeh-Sarabi et al., 2015; Wang et al., 
2012) were processed in the hundreds of milliseconds following stimulus presentation. Our 
results are also consistent with previous studies showing that information relating to 
individual preferences for specific stimuli (consumer products) was automatically processed 
during passive stimulus exposure (e.g., Telpaz et al., 2015; Tusche et al., 2010). Importantly 
however, our results suggest that the processing of such information may not occur for all 
stimuli. Our strong prediction of Relevance ratings in particular may indicate that 
stimuli/objects initially undergo automatic processing with regards to their subjective 
relevance to the decision maker and, if judged to be relevant, may then undergo more in-
depth processing. This view is consistent with previous studies which used stimuli of high 
relevance to participants and found that information predictive of individual preferences 
could reliably be decoded (e.g., Tusche et al., 2010). Crucially, if the processing of stimulus 
relevance indeed ‘gates’ in-depth semantic processing, the majority of positive findings (e.g., 
Bode et al., 2014; Tusche et al., 2010) showing that various semantic features of stimuli 
could be predicted from brain activity during passive exposure may be misleading. These 
studies seem to imply that a great variety of semantic aspects of stimuli are processed during 
passive exposure. However, this might only be true for highly relevant stimuli, or some 
dimensions (e.g., purchase decisions) might even simply reflect potentially correlated 
stimulus relevance judgements. Ultimately, the current study was not explicitly designed to 
test whether the processing of stimulus relevance gates the processing of more in-depth 
information. The processing of Wanting, which operationalised stimulus desirability in our 
study, may indeed be gated by subjective relevance processing. However, given the great 
similarity of both dimensions in terms of correlations between ratings and feature weight 
maps, these may both tap into the same underlying, rapid cognitive assessment.  

It has been suggested that the Time Reference of stimuli is automatically appraised 
(Bode et al., 2014a), since, for most potentially rewarding objects, it is important to know 
whether an object is currently available, or will not be available until sometime in the future. 
Our current results seem to challenge this assumption as we could not replicate the prediction 
of post-experimental Time Reference ratings. However, there were marked differences 
between the studies that could explain this discrepancy. First, previous research used only 
positively valenced stimuli (such as desirable foods, positive social interactions, status 
symbols, romantic scenes), which were further optimized for Time Reference ratings in 
pretests (Bode et al., 2014a). In contrast, the current study deliberately did not optimise 
stimuli but used an equal amount of high, medium and low valenced stimuli. Given that 
Relevance ratings were found to be highly correlated with normative valence ratings in the 
current study, the fact that Time Reference ratings could not be predicted may also indicate 
that decision-makers only automatically processed time-related information if an object was 
judged to be generally relevant to them. This would potentially suggest a hierarchy of 
processing stages, which we are not able to resolve with our (rather long) 20 ms analysis time 
windows. Subdividing our image sample by high and low relevance to assess this question 
was also precluded due to the low resulting trial numbers. Another difference is that the 
current study used a scale ranging from ‘past’ to ‘future’, with ‘present’ being the implicit 
mid-point, while the previous study only asked participant to rate objects on a scale from 
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‘present’ to ‘future’, and might therefore have captured a slightly different (and more 
decision-relevant) Time Reference concept.  

4.2 Interpreting the prediction of ratings  

One question which arises when considering the results of this study and previous 
decoding studies is: what is the exact nature of the predictive information which is being 
decoded? It is interesting to note that, with pattern classification studies in general, 
interpretation of the predictive information relies heavily on the variable being predicted. For 
example, in the current study, when decoding Wanting ratings, it is tempting to think the 
predictive information must directly relate to the processing of stimulus desirability, yet when 
decoding Relevance ratings, it is tempting to think the predictive information must directly 
relate to the processing of stimulus relevance. However, it is also possible that in both 
analyses the ratings are being predicted from the same source of predictive information which 
ultimately relates to the processing of some alternative stimulus dimension(s). In the current 
study, the close relationships between Relevance and Wanting ratings and the normative 
arousal, valence and approach/avoidance ratings suggests that judgments regarding stimulus 
relevance and desirability may have been driven by the aggregation of information regarding 
dimensions such as arousal, valence and/or approach/avoidance. This is supported by the fact 
that such features (arousal and valence) are rapidly reflected in brain activity following 
stimulus presentation (e.g. Feng et al., 2012; Harmon-Jones & Allen, 1998; see Olofsson et 
al., 2008 for review) and are also relatively time-locked in their processing so could easily be 
decoded across a broad range of tasks. Thus, one interpretation of the current pattern of 
results is that participants rapidly and automatically processed affective stimulus attributes, 
which later informed their relevance and desirability judgements. Ultimately, the current 
results alone do not allow us to determine which factors contribute to a general relevance 
signal in the brain and how these are integrated. Indeed, this might depend on both the nature 
of the stimuli and the exact questions used to assess the constructs. Exploring these questions 
poses an exciting avenue for future research.  

4.3 Semantic stimulus analysis and decision-making 

Critically, it could be argued that the participants’ Relevance and Wanting ratings 
only reflected low-level visual image features. If this were true, there would be no evidence 
that stimuli were automatically processed at a semantic level. However, our control analyses 
used a variety of low-level features, such as luminance, colour space and visual complexity, 
which are known to be processed during the same time period from which participants’ 
ratings could be predicted (e.g., Johannes et al., 1995; Tarkiainen et al., 2002), and we found 
no evidence for any associations. This replicated previous control analyses (Bode et al., 
2014a), which also found no such associations. 

 Note, however, that our results did not directly show that the either the subjective 
relevance or desirability judgments were used in decision-making. Notably, our participants 
were neither asked to choose between objects (e.g., Tusche et al., 2010), nor did we test for 
any spill-over effects of semantic attribute processing to related decision processes, as in 
previous research (e.g., Wilson & Daly, 2004; Murawski et al., 2012). Future studies are 
therefore needed to establish whether, given the possibility of actually acquiring an object, 
the Wanting statements predict real decision behaviour. Given the strong correlation of 
Wanting with other dimensions – in particular, valence and approach/avoidance – it is further 
possible that these related concepts might capture decision-relevant general desirability better 
than the definition of Wanting used here. Future studies might also aim to assess more 
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directly whether more detailed constructs such as preferences (Lebreton et al., 2009), 
approach motivation (Harmon-Jones & Allen, 1998), or utility (Fishburn, 1970) might 
describe the early information encoded in brain activity patterns better than our rating 
dimension. Given that incorporating more ratings into the current study would have 
excessively increased the length of the study, as well as demands on the participant, our 
results cannot answer these conceptual questions. 

4.4 Limits to the prediction of semantic information 

It is tempting to assume that because Familiarity and Aesthetic Pleasantness ratings 
could not be predicted, this implies that information relating to these stimulus features was 
not automatically processed. This conclusion is, however, inconsistent with previous research 
(Jacobsen & Höfel, 2003; Kühn & Gallinat, 2012; Peissig et al., 2007; Scott et al., 2006; 
Wang et al., 1994). It should be noted that the absence of significant results in MVPA 
analyses does not provide evidence for the absence of a neural representation. Another 
explanation for this null-effect could be that the coding of these attributes might involve 
deeper brain structures (e.g., Brown et al., 2011; Kühn & Gallinat, 2012), which are less 
likely to generate reliably detectable patterns of activity in the EEG (e.g., Koike et al., 2015; 
Srinivasan, 1999). Alternatively, these dimensions might have been less important for 
participants and therefore received less attention, or they might not have been consistently 
analysed for all objects, or for all participants, or semantic analyses might have occurred with 
less temporal consistency, attenuating the temporal patterns. Finally, as noted above, it may 
be the case that the processing of stimulus Relevance ‘gates’ the processing of more specific 
stimulus information, such as Familiarity, Aesthetic Pleasantness and Time Reference. All 
these possibilities would lead to weaker or less time-locked and more variable neural 
signatures, which cannot currently be detected by MVPA, despite its high sensitivity. Future 
studies could test these questions by again designing optimised stimulus sets, and 
investigating systematically under which circumstances neural signatures of these dimensions 
occur. Our ‘everyday’ object stimuli might simply have been too varied to warrant a semantic 
assessment of these dimensions on each trial. 

This study was also somewhat limited in its ability to successfully predict ratings in 
general as many participants did not display strong variance on several dimensions. This 
prohibited the use of SVR as an approach to regress ratings directly from brain activity 
patterns (Bode et al., 2014a). This lack of variance in responses again might have been due to 
the fact that the current stimuli were not optimised for any of the attributes of interest. 
Alternatively, it might have been due to the use of ordinal nine-point scales. In previous food-
related research investigating explicit Wanting, measures such as these have been criticised 
as being restricted in accuracy and limited by methodological problems such as ‘end 
avoidance’ (Finlayson & Dalton, 2012). Future research could investigate whether continuous 
scales, such as the bipolar semantic slider scales used to record the NAPS normative ratings 
(Marchewka et al., 2014), are better suited at capturing fine-grained differences in ratings. 
This might also allow the use of individual median splits to define categories for 
classification, which was precluded here due to the limited use of the scale in some 
participants. Further, while we could not explicitly separate between participants with high 
and low biases to respond “not at all”, as this led to insufficient statistical power, future 
experiments with larger sample sizes could address this question and investigate whether 
such groups differ in their neural signatures for these and other dimensions. 
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4.5 Conclusion 

To our knowledge, the current study is the first to provide evidence that the subjective 
relevance of task-irrelevant, everyday object stimuli can be predicted from brain activity 
patterns recorded with EEG, around one hundred milliseconds following stimulus 
presentation. These results suggest that a rapid, automatic semantic analysis occurs 
immediately following stimulus presentation during which decision-related information is 
extracted. The current results further suggest that subjective relevance and desirability 
judgments may result from the fast and automatic aggregation of information regarding 
stimulus valence, approach/avoidance and arousal. Disentangling which stimulus dimensions 
are automatically extracted for which kind of stimuli poses an interesting challenge for future 
research. 
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7. Figure captions 

Figure 1. Illustration of the paradigm. A jittered fixation period of 2-3 s preceded image presentation. 
During this period a grey screen with a central fixation box was presented. Following the fixation 
period each image was presented for 3.2 s. On 30% of trials the central fixation box would ‘fill’ into a 
solid black square, between 1-2 s following stimulus onset. Participants were tasked with monitoring 
the fixation box and pressing the space bar whenever it ‘filled’.  

Figure 2. Multivariate SVM classification. Spatio-temporal vectors were created from 20 ms time 
windows of data. The vectors were labelled ‘high’ or ‘low’ depending on whether the image presented 
had been given a ‘high’ or ‘low’ Wanting rating (same for Relevance, Familiarity, Aesthetic 
Pleasantness and Time Reference in the case of those analyses). A linear SVM classifier was trained 
to distinguish between ‘high’ and ‘low’ vectors. The ability of the classifier to predict whether novel 
data were associated with ‘high’ or ‘low’ ratings was then tested. After the full classification 
procedure the 20 ms analysis window would step forward 10 ms in time and the procedure would be 
repeated. 

Figure 3. Spatio-temporal decoding of Wanting ratings. Linear SVM classification was used to 
predict Wanting ratings from distributed patterns of CSD ERPs. The black line represents the 
classification accuracy. The blue line represents the empirical chance distribution. The red bar denotes 
a statistically significant difference between classification accuracy and the empirical chance 
distribution in the 50 ms time window spanning 100-150 ms.  

Figure 4. Spatio-temporal decoding of Relevance ratings. Linear SVM classification was used to 
predict Relevance ratings from distributed patterns of CSD ERPs. The black line represents the 
classification accuracy. The blue line represents the empirical chance distribution. The red bar denotes 
a statistically significant difference between classification accuracy and the empirical chance 
distribution in the 50 ms time window spanning 100-150 ms. The red data points denote single time 
points where classification accuracy was significantly different from the empirical chance distribution 
following cluster-based correction for multiple comparisons.  

Figure 5. Spatio-temporal decoding of A) Aesthetic Pleasantness, B) Familiarity, and C) Time 
Reference ratings. Linear SVM classification was used to predict these ratings from distributed 
patterns of CSD ERPs. The black line represents the classification accuracy. The blue line represents 
the empirical chance distribution. No single time points showed significant decoding following 
cluster-based correction for multiple comparisons. Note: the final 50 ms time window for Time 
Reference approached significance. 

Figure 6. Scalp maps of the z – standardised absolute feature weights, averaged across 100-150ms for 
A) Relevance ratings and B) Wanting ratings. 


