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Abstract  21 

To navigate the world safely, we often need to rapidly ‘change our mind’ about 22 

decisions. Current models assume that initial decisions and change-of-mind decisions draw 23 

upon common sources of sensory evidence. In two-choice scenarios, this evidence may be 24 

‘relative’ or ‘absolute’. For example, when judging which of two objects is the brightest, the 25 

luminance difference and luminance ratio between the two objects are sources of ‘relative’ 26 

evidence, which are invariant across additive and multiplicative luminance changes. 27 

Conversely, the overall luminance of the two objects combined is a source of ‘absolute’ 28 

evidence, which necessarily varies across symmetric luminance manipulations. Previous 29 

studies have shown that initial decisions are sensitive to both relative and absolute evidence; 30 

however, it is unknown whether change-of-mind decisions are sensitive to absolute evidence. 31 

Here, we investigated this question across two experiments. In each experiment participants 32 

indicated which of two flickering greyscale squares was brightest. Following an initial 33 

decision, the stimuli remained on screen for a brief period and participants could change 34 

their response. To investigate the effect of absolute evidence, the overall luminance of the 35 

two squares was varied whilst either the luminance difference (Experiment 1) or luminance 36 

ratio (Experiment 2) was held constant. In both experiments we found that increases in 37 

absolute evidence led to faster, less accurate initial responses and slower changes of mind. 38 

Change-of-mind accuracy decreased when the luminance difference was held constant, but 39 

remained unchanged when the luminance ratio was fixed. We show that the three existing 40 

change-of-mind models cannot account for our findings. We then fit three alternative 41 

models, previously used to account for the effect of absolute evidence on one-off decisions, 42 

to the data. A leaky competing accumulator model best accounted for the changes in 43 

behaviour across absolute evidence conditions – suggesting an important role for input-44 

dependent leak in explaining perceptual changes of mind. 45 

Keywords: change-of-mind, decision-making models, evidence accumulation, absolute evidence  46 
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1. Introduction 47 

Highly successful theoretical accounts of simple decision-making processes have arisen 48 

from the idea that decisions are reached via the accumulation of noisy evidence to a threshold 49 

level (Gold & Shadlen, 2007; Ratcliff, Smith, Brown, & McKoon, 2016; Smith & Ratcliff, 2004). 50 

In line with these accounts, neural activity in humans, monkeys, rodents, and other animals has 51 

been shown to display accumulation-like ramping patterns during decision making (Gold & 52 

Shadlen, 2007; Hanks et al., 2015; Hanks & Summerfield, 2017; O’Connell, Dockree, & Kelly, 53 

2012). Moreover, evidence accumulation models have effectively captured both the choices 54 

people make, as well as the time taken to make them, across a wide range of experimental tasks 55 

and contexts (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006). These models typically include 56 

the assumption that the evidence accumulation process terminates once a decision threshold is 57 

crossed. This implies that, once formed, decisions are necessarily acted upon without alteration. 58 

However, this is at odds with a wealth of evidence suggesting that humans and animals are able 59 

to rapidly change their minds about decisions, even as they unfold (Albantakis, Branzi, Costa, & 60 

Deco, 2012; Burk, Ingram, Franklin, Shadlen, & Wolpert, 2014; Kaufman, Churchland, Ryu, & 61 

Shenoy, 2015; Kiani, Cueva, Reppas, & Newsome, 2014; Moher & Song, 2014; Resulaj, Kiani, 62 

Wolpert, & Shadlen, 2009; van den Berg et al., 2016).  63 

To better understand changes of mind, and decision-making in general, it is important to 64 

consider the nature of the evidence being accumulated in the decision process. In simple choices 65 

between two alternatives, the decision maker may draw upon relative and/or absolute sources of 66 

evidence. ‘Relative evidence’ is information which is invariant across symmetric changes in the 67 

magnitude or intensity of the two choice options. For example, when deciding which of two 68 

objects is the brightest, the difference in luminance between the two objects constitutes relative 69 

evidence. This is because if the luminance of each object is increased by a constant amount (i.e. 70 

an additive stimulus manipulation) the difference in luminance between them will remain the 71 

same. Similarly, the luminance ratio (luminance of stimulus A/luminance of stimulus B) is also 72 
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relative evidence; if the luminance of each stimulus is multiplied by a constant factor (i.e. a 73 

multiplicative stimulus manipulation) the ratio of the luminance values will remain the same. 74 

‘Absolute evidence’ on the other hand is information which necessarily varies with symmetric 75 

changes in stimulus magnitude. In the above example, the overall sum of the luminance values 76 

for each stimulus constitutes absolute evidence; if the luminance of each stimulus is increased by 77 

a fixed additive or multiplicative amount then their overall sum will also increase.  78 

In previous research, the effects of variations in relative evidence on decision-making 79 

have been well characterised. In contrast, absolute evidence has often been overlooked as a 80 

potential source of decision-relevant information, perhaps because this information is task-81 

irrelevant when making relative judgments (i.e. it tells the decision-maker nothing about which of 82 

the two objects is brighter). Recently however, a number of studies have shown that variations in 83 

absolute evidence do affect decision-making behaviour (Hunt et al., 2012; Polanía, Krajbich, 84 

Grueschow, & Ruff, 2014; Ratcliff, Voskuilen, & Teodorescu, 2018; Teodorescu, Moran, & 85 

Usher, 2016). In particular, these studies have demonstrated that people respond faster, and 86 

often less accurately, to stimuli containing high levels of absolute evidence (i.e. brighter pairs of 87 

squares). This occurs across a wide range of experimental tasks and contexts with similar 88 

findings also reported in monkeys (Pirrone, Habiba, Hayden, Stafford, & Marshall, 2018). 89 

Moreover, normative modelling has also shown that absolute evidence sensitivity is expected 90 

under optimal decision policies (e.g., when a speed up in response time helps maximise the 91 

reward rate across choices; Marshall, 2019; Steverson, Chung, Zimmermann, Louie, & Glimcher, 92 

2019; Tajima, Drugowitsch, Patel, & Pouget, 2019; Tajima, Drugowitsch, & Pouget, 2016). As 93 

such, there is strong support for the notion that decision-making behaviour across a range of 94 

organisms is sensitive to absolute evidence. This raises the question of whether variations in 95 

absolute evidence affect the frequency and timing of subsequent change-of-mind decisions.  96 

An influential theory developed by Rabbitt and colleagues posits that changes of mind 97 

occur because the decision process continues to unfold even after an initial decision is made 98 
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(Rabbitt & Vyas, 1981). According to this view, if enough late-arriving evidence is accumulated 99 

against an initial decision then a change of mind occurs. Recently, a number of computational 100 

models have been developed which incorporate this notion (Albantakis & Deco, 2011; Atiya, 101 

Rañó, Prasad, & Wong-Lin, 2019; Resulaj et al., 2009). The first is an extension of the diffusion 102 

model of decision-making (Ratcliff, 1978) in which ‘post-decisional’ evidence accumulation 103 

occurs (Resulaj et al., 2009). In this model, if enough late-arriving evidence is accumulated 104 

against an initial decision, such that a second decision threshold is crossed, then a change of 105 

mind occurs. The second model is a biophysically-plausible attractor network (Albantakis & 106 

Deco, 2011). This consists of a network of simulated neurons containing two outcome-selective 107 

pools. In this model, the decision-making process relates to a transition from a symmetric state, 108 

where both pools fire at approximately the same rate, to a decision state, where one pool fires at 109 

a higher rate than the other. Changes of mind occur when the firing rate of one pool crosses a 110 

threshold level, triggering an initial decision, but the alternative pool subsequently crosses this 111 

threshold and eventually predominates. The third model is a neural circuit model which encodes 112 

decision uncertainty (Atiya et al., 2019). In this model, changes of mind are driven in part by 113 

transient activity from a ‘decision-uncertainty monitoring module’ which is partially distinct from 114 

the core decision-making circuitry. 115 

These three models differ in a number of important ways. However, at their core all 116 

models assume that changes of mind arise out of a continuation of the initial decision process. A 117 

corollary of this assumption is that initial decisions and change-of-mind decisions must be 118 

sensitive to common sources of sensory information. Given the findings showing that initial 119 

decisions are sensitive to absolute evidence, and the assumption that changes of mind arise out 120 

of the initial decision process, it follows that change-of-mind decisions should also be sensitive 121 

to variations in absolute evidence. However, this has yet to be tested. The primary aim of the 122 

current study was therefore to test this hypothesis. To foreshadow our results, we found that 123 

change-of-mind decisions, like the decisions which precede them, are indeed sensitive to 124 
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absolute evidence. Given this, our second aim was to investigate whether this sensitivity plays 125 

out in a manner which can be accounted for by existing models.  126 

Considering the existing change of mind models, both the attractor network model 127 

(Albantakis & Deco, 2011) and the neural circuit model (Atiya et al., 2019) are inherently 128 

sensitive to absolute evidence. However, they make opposing predictions about the effect of 129 

absolute evidence magnitude on change of mind frequency. With increased levels of absolute 130 

evidence, the attractor network model predicts that changes of mind (following both correct and 131 

incorrect responses) will be more likely to occur (see Figure 7 in Albantakis & Deco, 2011). In 132 

contrast, the neural circuit model predicts that changes of mind (following both correct and 133 

incorrect responses) will be less likely (see section 4.2). Unlike these two models, the extended 134 

diffusion model is invariant to absolute evidence. To make this model sensitive to absolute 135 

evidence, auxillary assumptions must be adopted (Ratcliff, Voskuilen, & Teodorescu, 2018). One 136 

such assumption is that the amount of noise within the decision process scales positively with 137 

the amount of absolute evidence (Ratcliff, Voskuilen, & Teodorescu, 2018). This assumption has 138 

been adopted in previous studies of human and animal decision making (Brunton, Botvinick, & 139 

Brody, 2013; Lu & Dosher, 2008; Teodorescu et al., 2016) and is in accord with the idea that 140 

neural firing is approximately Poisson distributed (Ratcliff, Voskuilen, & Teodorescu, 2018). 141 

Alternatively, one can assume that across-trial-variability in the average rate of evidence 142 

accumulation scales positively with absolute evidence magnitude (Ratcliff, Voskuilen, & 143 

Teodorescu, 2018). Finally, a fourth model, the leaky competing accumulator (LCA) model, has 144 

recently been used to give an alternative account of the effect of absolute evidence on perceptual 145 

decisions (Ratcliff, Voskuilen, & Teodorescu, 2018; Teodorescu et al., 2016). This model is 146 

similar to the attractor network model (Albantakis & Deco, 2011), however to our knowledge it 147 

has not been used to model change-of-mind behaviour (but see Evans, Dutilh, Wagenmakers, & 148 

Maas, 2019 for a recent application of the LCA to the related behavioural phenomenon of 149 

‘double responding’).  150 
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In the current study, we first established whether any of the three existing change-of-151 

mind models could predict the general pattern of change-of-mind results we observed. We then 152 

explored whether two variants of the extended diffusion model, which each incorporate one of 153 

the auxiliary assumptions outlined above, as well as a variant of the LCA model, which included 154 

a change of mind mechanism, could account for our observations.  155 

1.1 The Current Study 156 

To investigate whether change-of-mind decisions were sensitive to absolute evidence we 157 

ran two separate experiments employing the same dynamic luminance discrimination task. In this 158 

task participants had to rapidly indicate which of two flickering greyscale squares was on average 159 

the brightest by pressing one of two buttons on a response pad. Crucially, following an initial 160 

judgement the stimuli remained on screen for a fixed duration (1s), and participants were free to 161 

change their response. To investigate the effect of absolute evidence, the absolute luminance of 162 

the two squares was manipulated (low/high), whilst one source of relative evidence was held 163 

constant. In Experiment 1, the difference in luminance between the two stimuli was held 164 

constant across the low and high absolute evidence trials (i.e. an additive stimulus manipulation). 165 

In Experiment 2, the luminance ratio was held constant (i.e. a multiplicative stimulus 166 

manipulation). For both experiments, the main question of interest was whether the frequency 167 

and timing of changes of mind would vary across low and high absolute evidence trials.  168 

2. Materials and Methods 169 

2.1 Participants 170 

In both Experiment 1 and Experiment 2, 30 right-handed participants each gave written 171 

informed consent. They were each remunerated $15 AUD for their time. In Experiment 1, one 172 

dataset was excluded from all analyses due to an unusually high number of button presses per 173 

trial (~67% of trials contained ≥ 3 button presses). In Experiment 2, no participants were 174 

excluded. For Experiment 1, the final sample consisted of 29 participants aged 18-37 years (M = 175 

23.07, SD = 4.52, 23 female). For Experiment 2, the final sample consisted of 30 participants 176 
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aged 19-39 years (M = 24.73, SD = 5.13, 17 female). The experimental procedures were 177 

approved by the University of Melbourne ethics committee (ID 1749951).  178 

2.2 Materials  179 

All stimuli were presented on a Sony Trinitron Multiscan G420 CRT Monitor 180 

(Resolution 1280 x 1024 pixels; Frame Rate 75 Hz). The monitor was gamma corrected using a 181 

ColorCAL MKII Colorimeter. Responses were recorded using a Tesoro Tizona Numpad 182 

(Polling Rate of 1000 Hz). The task was coded in MATLAB 2015b using functions from the 183 

Psychophysics Toolbox Version 3.0.14 (Brainard, 1997; Kleiner et al., 2007). Whilst performing 184 

the experiment participants were seated in a darkened room with their chin resting on a chinrest 185 

~65 cm from the screen.  186 

2.3 Stimuli and Procedures 187 

In both experiments, participants were familiarised with the task requirements and 188 

stimuli in the task instructions, but did not undergo training prior to the main task.  In each 189 

experiment, participants performed 1000 trials of a luminance discrimination task (depicted in 190 

Fig 1). On each trial they indicated which of two dynamic stimuli, which were flickering greyscale 191 

squares (70 x 70 pixels; ~2.18 x 2.18 degrees of visual angle), was on average the brightest. The 192 

squares were presented side-by-side at equal distance from the centre, with 70 pixels separating 193 

them horizontally. In both experiments there were two stimulus conditions: a low absolute 194 

evidence condition and a high absolute evidence condition. For Experiment 1, we employed an 195 

additive stimulus manipulation. The mean RGB values for the target (the brighter stimulus) and 196 

the non-target (the darker stimulus) in the low condition were 112 and 100, respectively. The 197 

mean RGB values in the high condition were 200 and 188 respectively. For Experiment 2, we 198 

employed a multiplicative stimulus manipulation. The mean RGB values for the target and the 199 

non-target in the low condition were 116 and 100. The mean RGB values in the high condition 200 

were 203 and 175. Note that for Experiment 2, we increased the difference in luminance 201 

between the two squares slightly to increase initial response accuracy. In both experiments, on 202 
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each frame, independent greyscale values for the two stimuli were drawn from separate Gaussian 203 

distributions centered around their respective mean values. The standard deviation of the 204 

distributions was 25.5 and the distributions were truncated at 2 standard deviations from the 205 

mean. For discussion of our stimulus manipulations with respect to Weber’s law – and the role 206 

that nonlinear perceptual processing plays in explaining task behaviour – see Section 4.5.  207 

In both experiments, the low and high absolute evidence stimulus conditions were 208 

presented randomly interleaved within the blocks. Responses were given using the 1 (left 209 

response) and 3 (right response) keys on the numpad. Participants had 800 ms from stimulus 210 

onset to make an initial response. From the time of the initial response, the stimuli remained on 211 

screen for a fixed duration of 1 s. During this time, participants were able to change their mind 212 

and give a second response. Participants were told to be as accurate as possible in their initial 213 

responses but to change their mind whenever they felt that this was necessary. Following the end 214 

of each trial, feedback (“correct”, “error” or “too slow”) was presented for 300ms. This 215 

feedback was based on the last button that participants had pressed. A red fixation dot was 216 

presented for 500 ms before stimulus presentation. Self-paced breaks were provided every 100 217 

trials.  218 

Fig 1. Schematic of the trial structure. Each trial began with the presentation of a red fixation dot for 219 
500 ms. The stimuli were then presented for up to 800 ms or until a button was first pressed. The luminance 220 
of each square was updated on each frame such that the two squares flickered slightly. From the time of 221 
the initial response the post-decision period (fixed duration 1 s) began. Feedback was then presented for 222 
300 ms in the form of (“correct” or “error”). If participants failed to respond within 800 ms of the stimuli 223 
being presented, the post-decision period was skipped and “too slow” was presented for 300 ms.  224 
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The stimuli presented in the first half of each experiment were exactly replicated in the 225 

second half of each experiment. This was done so that we could conduct double-pass agreement 226 

analyses (Lu & Dosher, 2008). The logic behind such an analysis is that when individuals make 227 

perceptual decisions, there are two broad categories of noise which can influence their responses. 228 

These are: external noise, due to factors such as fluctuations in the stimulus evidence strength 229 

across time, and internal noise, due to factors such as variability in neuronal firing rates and 230 

fluctuations in attention or motivation over time. When physically identical stimuli are presented 231 

to participants multiple times, the limiting factor with respect to the consistency of their 232 

responses will be the level of internal noise (Green, 1964). Therefore, by examining response 233 

consistency across repeated presentations of the same stimuli it is possible to estimate the 234 

average level of internal noise for a participant. Moreover, it is possible to investigate whether 235 

there are differences in the consistency of responses to stimuli containing low and high levels of 236 

absolute evidence.  237 

2.4 Statistical Analyses 238 

Trials in which participants failed to respond, or in which they changed their mind more 239 

than once (i.e. 3 or more button presses per trial), were excluded. Trials in which the initial 240 

response time was less than 150 ms or in which the change of mind occurred less than 50 ms 241 

after the initial response were also excluded. All analyses were conducted using mixed-effects 242 

models in R (version 3.5) via the lme4 package (version 1.1; Bates, Mächler, Bolker, & Walker, 243 

2015). All continuous predictor variables were centered and scaled. Likelihood ratio tests were 244 

performed to compare the goodness of fit of a full model, which contained the main effect or 245 

interaction of interest, to a null model which did not include the effect of interest. Alongside the 246 

outcome of each likelihood ratio test, we also estimated group mean differences between the 247 

absolute evidence conditions for choice proportions and RTs (computed using the effects 248 

package in R; Fox et al., 2016). Equations for all full models are reported below and the model 249 

outputs are presented in the supporting information (Tables A.1-A.5). The data from both 250 



 11 

experiments was analysed separately using identical models for each analysis. Both datasets and 251 

all code are available at https://osf.io/sr58p/. 252 

2.4.1 Random Effects Structure 253 

In all models the intercept was allowed to vary among participants. Moreover, when 254 

possible (i.e. when the model still converged), a random intercept for stimuli nested within 255 

participants was also included. The logic behind these decisions was as follows. First, responses 256 

from a single participant are likely to be correlated. For example, some participants may be more 257 

prone to changing their mind than others. Additionally, responses to physically identical stimuli 258 

are also often correlated (Ratcliff, Voskuilen, & McKoon, 2018). For example, some stimuli may 259 

be more difficult to judge than others, due to random fluctuations in the noise added in each 260 

trial. By allowing the intercept to vary among participants and among stimuli, we could account 261 

for these sources of dependence in the data. As stimuli were not repeated across participants 262 

(noise was randomly generated for each participant, but was consistent across stimulus 263 

repetitions within participants), the random intercept for stimuli was nested within participants.  264 

Where possible, random slopes by participant were also included for the predictors of 265 

theoretical interest. In the analysis of initial accuracy, the random slope for absolute evidence 266 

condition was omitted because the model including this parameter was degenerate (as indicated 267 

by a correlation of -1 between the random effects). Moreover, no random slopes were included 268 

in the analysis of change time due to convergence issues, which were likely due to the fact that 269 

only a small subset of trials (i.e. those containing a change of mind) are included in this analysis. 270 

In the response time and choice consistency models a single random slope for the absolute 271 

evidence condition variable was included. In the change-of-mind-frequency model a random 272 

slope was also included for initial response time and for the interaction between absolute 273 

evidence and initial accuracy. These were included for exploratory purposes after the data was 274 

plotted and the possibility of an interaction between initial accuracy and absolute evidence 275 

became apparent.  276 
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2.4.2 Regression model equations 277 

The relationship between initial decision accuracy and absolute evidence magnitude was 278 

investigated using a generalized linear mixed-effects model (GLMM; binomial family) with a logit 279 

link function: 280 

Accuracy ~ Condition + RTi + (1 + RTi|Participant) + (1|Participant:Stimulus)  281 

In the above equation, Accuracy is a binary variable (0 = error, 1 = correct), Condition is 282 

a binary variable specifying absolute evidence magnitude (0 = low, 1 = high) and RTi is a 283 

continuous variable specifying initial response time. When conducting the likelihood ratio test, 284 

this full model was compared to a null model which did not include the main effect of condition. 285 

The relationship between initial response time and absolute evidence magnitude was 286 

investigated using a GLMM (Gamma family) with an identity link function as recommended by 287 

Lo and Andrews (2015): 288 

RTi ~ Condition  + Accuracy + (1 + Condition|Participant)  289 

 When conducting the likelihood ratio test, this full model was compared to a null model 290 

which did not include the main effect of condition but did include the random slope for 291 

condition. 292 

The relationship between changes of mind and absolute evidence magnitude was 293 

investigated using GLMM (binomial family) with a logit link function: 294 

CoM ~ Condition * Accuracy + RTi + (1 + RTi + Condition * Accuracy|Participant) + 295 

(1| Participant:Stimulus) 296 

In the above equation, CoM is a binary variable (0 = no change, 1 = change of mind). 297 

For the change-of-mind analyses, a likelihood ratio test was first conducted between a model 298 

containing the main effect of condition and a null model which did not include this main effect 299 

but did include a random slope for condition. Subsequently, a likelihood ratio test was conducted 300 

between a model which included the main effect of condition and interaction between initial 301 
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accuracy and condition and a model which included only the main effect (but did include the 302 

random slope for the main effects and interaction).  303 

The relationship between change time and absolute evidence magnitude was investigated 304 

using a GLMM (Gamma family) with an identity link function: 305 

Change Time ~ Condition + Accuracy + RTi + (1|Participant) 306 

Finally, the relationship between choice consistency and absolute evidence magnitude 307 

was investigated using a GLMM (binomial family) with a logit link function: 308 

Consistency ~ Condition + Accuracy + RTi + (1 + Condition|Participant) 309 

In the above equation, Consistency is a binary variable (0 = different responses, 1 = 310 

same responses). For this analysis, likelihood ratio test was conducted between two models 311 

which included a random slope for the main effect of condition.  312 

3. Results  313 

3.1 Experiment 1 (Additive stimulus manipulation) 314 

 Mixed effects regression models were fit to response time and accuracy data to test for 315 

effects of absolute evidence on initial and change-of-mind decisions. These analyses revealed 316 

that participants made their initial decisions less accurately (an estimated 12.7% reduction in the 317 

probability of making a correct initial decision; likelihood ratio test, χ² (1) = 303.91, p < 2.20 x 318 

10-16; Fig 2A) and faster (an estimated 14 ms decrease in response time; χ² (1) = 10.96, p = 9.31 x 319 

10-4; Fig 2B) in high compared to low absolute evidence trials (see section 4.4.1 for a discussion 320 

on the role that perceptual nonlinearities play in explaining these, and the following, behavioural 321 

effects). Participants also changed their mind less often (an estimated 1.6% reduction in the 322 

overall probability of any change of mind occurring; χ²(1) = 5.12, p = .024) and more slowly (an 323 

estimated 36 ms increase in change-of-mind response time; χ²(1) = 14.48, p = 1.42 x 10-4; see Fig 324 

2D) in high absolute evidence trials. Moreover, there was a significant interaction between initial 325 

response accuracy and absolute evidence condition, indicating that participants corrected fewer 326 

errors but spoilt more initially correct responses in high absolute evidence trials (an estimated 327 
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8.4% decrease in the probability of correcting an error, and an estimated 2% increase in the 328 

probability of spoiling an initially correct response; χ²(1) = 24.77, p = 6.46 x 10-7). This 329 

interaction indicates that participants made less accurate change-of-mind decisions in high 330 

absolute evidence trials. This pattern was evident across the course of the experiment (Fig A.1 in 331 

the supplementary materials shows the proportion of changes of mind across time for both 332 

experiments).  333 

Fig 2. Experiment 1 behavioral results. A) Initial decision accuracy, B) initial response time, C) change 334 
of mind proportion, and D) change-of-mind response time (CoM RT; the latency of the change-of-mind 335 
response relative to the initial response) across low (yellow) and high (blue) absolute evidence conditions. 336 
Solid lines indicate correct initial responses and dashed lines indicate incorrect initial responses. Error bars 337 
indicate standard errors of the mean (SEM). The gray dots in sections A and C represent data from 338 
individual participants. Note that in section C the interaction between initial accuracy and absolute evidence 339 
condition is somewhat obscured as participants were less accurate in the high condition to begin with; the 340 
interaction can be seen more clearly when changes of mind are displayed as a proportion of the number of 341 

errors and correct responses separately (see Fig 4). 342 
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3.2 Experiment 2 (Multiplicative stimulus manipulation) 343 

 Participants responded less accurately (an estimated 3% reduction in the probability of 344 

making a correct initial decision; likelihood ratio test, χ² (1) = 36.47, p = 1.55 x 10-9; Fig 3A) and 345 

faster (an estimated 10 ms decrease in response time; χ² (1) = 8.18, p = 0.004; Fig 3B) in high 346 

compared to low absolute evidence trials. There was no significant difference in the proportion 347 

of changes of mind across absolute evidence conditions (an estimated 0.1% reduction in the 348 

probability of any change of mind occurring; χ²(1) = 0.18, p = .67), and no evidence of an 349 

interaction between initial response accuracy and absolute evidence condition (an estimated 1.4% 350 

decrease in the probability of correcting an error, and an estimated 0.1% decrease in the 351 

probability of spoiling an initially correct response; χ²(1) = 0.04, p = 0.85). However, changes of 352 

mind were significantly slower in the high absolute evidence trials (an estimated 42 ms increase 353 

in change-of-mind response time; χ²(1) = 24. 59, p = 7.12 x 10-7; see Fig 3D). Change-of-mind 354 

latency here shows a different pattern to in experiment 1. In particular, in experiment 1 corrected 355 

errors were slower than spoilt responses. However, in experiment 2, corrected errors were more 356 

broadly distributed than spoilt responses. This difference across experiments is likely due to the 357 

fact that in experiment 2 the stimuli were slightly easier to discriminate (see section 2.3), so initial 358 

responses were more accurate.  359 
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Fig 3. Experiment 2 behavioral results. A) Initial decision accuracy, B) initial response time, C) change 360 
of mind proportion, and D) change-of-mind response time (i.e. the latency of the change-of-mind response 361 
relative to the initial response) across low (yellow) and high (blue) absolute evidence conditions. Solid lines 362 
indicated correct initial responses and dashed lines indicate incorrect initial responses. Error bars indicate 363 
standard errors of the mean (SEM). The gray dots in sections A and C represent data from individual 364 
participants. 365 

3.3 Choice consistency analysis (Experiments 1 & 2) 366 

For both experiments we also conducted a double-pass agreement analysis to investigate 367 

whether absolute evidence magnitude was related to the consistency of participants’ responses 368 

across exact repetitions of the stimuli. To enable this, the stimuli in the first half of each 369 

experiment were exactly replicated in the second half of each experiment (see Methods). The 370 

purpose of these analyses was to examine the ratio of external (i.e. stimulus driven) to internal 371 

variability within the decision process – with the aim of better informing our understanding of 372 

the participants’ decision process(es) and further constraining the computational models. To 373 
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perform this analysis, logistic mixed effects regression was used to predict whether participants 374 

would make the same or different responses across stimulus repetitions (coded as 1 or 0), and 375 

whether this was influenced by the absolute evidence condition.  376 

 The full model (which included the main effect of absolute evidence condition) fit the 377 

data significantly better than the null model for Experiment 1 (an estimated 5.1% reduction in the 378 

probability of repeating a response; χ²(1) = 5.36, p = 0.021) but not for Experiment 2 (an estimated 379 

1.5% reduction in the probability of repeating a response; χ²(1) = 2.19, p = 0.14). This suggests 380 

that the additive stimulus manipulation has a larger effect on choice consistency than the 381 

multiplicative manipulation (in which evidence ratios are conserved). In section 4.5.5 below, we 382 

examine whether these changes in choice-consistency can be accounted for within a formal 383 

computational framework. 384 

Fig 4. Changes of mind as a proportion of initial response type (i.e. correct and incorrect initial 385 
responses) for both experiments. The dashed bars represent the number of corrected errors as a 386 
proportion of the total number of initially incorrect responses made in each stimulus condition. The solid 387 
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bars display the number of spoilt responses (i.e. changes from a correct response to an incorrect response) 388 
as a proportion of the total number of initially correct responses. Error bars represent SEM. Gray dots 389 
represent data from individual participants.  390 

3.4 Summary of results 391 

 The analyses above demonstrate that both initial decisions and subsequent change-of-392 

mind decisions were affected by variations in absolute evidence magnitude. Across both 393 

experiments, we found that initial decisions were faster and less accurate on high absolute 394 

evidence trials. We also found that with an additive stimulus manipulation, change-of-mind 395 

decisions were less accurate. However, with a multiplicative stimulus manipulation the accuracy 396 

of change-of-mind decisions was unaffected. Finally, in direct contrast to the initial response 397 

time effects, we found that change-of-mind decisions were consistently slower on high absolute 398 

evidence trials across both experiments. 399 

4. Computational modelling 400 

Following the novel observation that change-of-mind decisions were sensitive to 401 

absolute evidence magnitude, we sought to account for this sensitivity within a formal modelling 402 

framework. Below, we first briefly demonstrate that all of the existing change-of-mind models 403 

‘out of the box’ (i.e. with no additional modifications) cannot account for the current findings. 404 

Then, we examine whether three additional models (two modified DDMs and an extended LCA 405 

model) which have all been used to account for the effect of absolute evidence on one-off 406 

perceptual decisions, can account for the current observations.  407 

Note, that for the current analyses we have restricted our focus to models which have 408 

previously been used to account for changes of mind or the effect of absolute evidence on one-409 

off perceptual decisions. However, for discussions concerning the role that confidence (and 410 

associated models) might play in accounting for the current findings see sections 5.3 and 5.4. 411 

4.1 The unmodified extended DDM (Resulaj et al., 2009) 412 
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 As we mentioned above, the extended DDM in its original form is a purely relative 413 

model (i.e. only has access to evidence differences, not absolute values). As such, it cannot 414 

account for any of the effects of absolute evidence which we have observed. In Section 4.4. 415 

below, we examine whether variants of this model with additional modifications are able to 416 

capture the current findings. 417 

4.2 Attractor network model (Albantakis & Deco, 2011) 418 

 Predictions for the attractor network model regarding the effect of absolute evidence on 419 

the frequency of changes of mind were derived in previous work by Albantakis and Deco (2011; 420 

see their Fig 7). In general, this model predicts that more changes of mind will occur (following 421 

both incorrect and correct initial responses) with increased absolute evidence. This is not 422 

consistent with the interaction between absolute evidence and initial response accuracy on the 423 

proportion of changes of mind which we observed in experiment 1. In particular, this model 424 

cannot explain the decrease in the proportion of corrected errors that occurs with higher 425 

absolute evidence. As such, this model does not provide a satisfactory account for the observed 426 

effect of absolute evidence on change-of-mind decisions (see section 5.7 for discussion of 427 

additional modifications which could be considered). 428 

4.3 Neural circuit model (Atiya et al., 2019) 429 

 To derive predictions for the neural circuit model, we simulated this model across 430 

varying levels of absolute evidence and relative evidence strength, defined in the model as 431 

evidence quality (see Fig 5). Overall, we found that this model predicts fewer changes of mind 432 

(following both incorrect and correct initial responses) with higher absolute evidence. Again, this 433 

is not consistent with the interaction between absolute evidence and initial response accuracy 434 

which we observed in experiment 1. In particular, this cannot account for the increase in the 435 

number spoilt responses which we observed. As such, this model also does not provide a 436 

satisfactory account of the observed data (see section 5.7 for discussion of additional 437 

modifications which could be considered). 438 



 20 

 Fig 5. Simulated results for the neural circuit model. In these simulations the amount of absolute 439 
evidence was varied across three levels (low, medium, high) by changing the 𝜇0 parameter (𝜇0 = 20 for 440 

low, 𝜇0 = 30 for medium, 𝜇0 = 40 for high). All other parameter values were taken from Atiya et al. (2019) 441 
and were kept constant across simulations. The medium absolute evidence simulation is therefore a direct 442 
reproduction of the model simulations run in the original paper. In this figure the x-axis represents the level 443 
of relative evidence (in this case the evidence difference), with lower values indicate decreased relative 444 
evidence. Dashed lines indicate spoilt responses and solid lines indicate corrected errors. Simulations were 445 
run using the code provided at https://github.com/nidstigator/uncertainty_com_modelling. We simulated 446 
8000 trials per evidence quality level. 447 

4.4 Two modified DDMs (c.f. Ratcliff et al., 2018) 448 

As mentioned above, two auxiliary assumptions have recently been proposed which 449 

allow absolute evidence sensitivity to be accounted for within the framework of the diffusion 450 

model (Ratcliff, Voskuilen, & Teodorescu, 2018). We therefore investigated whether two novel 451 

versions of the extended diffusion model, which each incorporate one of these assumptions, 452 

were able to account for the observed data. One model included the assumption that within-trial 453 

variability in the decision process differs across absolute evidence conditions. This will be 454 

referred to as the “sigma model” as assumptions were made regarding the sigma parameter, 455 

which specifies the degree of within-trial variability. The alternative model included the 456 
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assumption that across-trial variability in the decision process differs across absolute evidence 457 

conditions. This model will be referred to as the “eta model” as assumptions were made 458 

regarding the eta parameter, which specifies across-trial variability in the rate of evidence 459 

accumulation.  460 

4.4.1 DDM model specifics 461 

In both the sigma and eta models, the drift rate (i.e. the average rate of evidence 462 

accumulation) was allowed to vary between low and high absolute evidence trials. This was to 463 

account for the possibility of Weber-like scaling with our stimulus manipulation. For our task, 464 

Weber-like scaling (i.e. a compressive nonlinear transformation of perceptual evidence) would 465 

result in a smaller perceived difference in luminance between the two stimuli in the high absolute 466 

evidence condition, compared to the low absolute evidence condition (particularly in Experiment 467 

1 where evidence ratios were not conserved). This is likely a key reason as to why participants 468 

made less accurate decisions in the high absolute evidence condition. In the DDM, the drift rate 469 

parameter represents the amount of relative evidence (i.e. the perceived difference in luminance 470 

between the two squares). We therefore let this parameter vary across the absolute evidence 471 

conditions to account for possible differences in the perceived amount of relative evidence 472 

across conditions. In section 4.4.3. we discuss what the estimated drift-rates for each model tell 473 

us about the relationship between objective stimulus values and perceived stimulus 474 

representations in our task. 475 

In the sigma model, the degree of within-trial variability in the decision process was 476 

allowed to vary across low and high absolute evidence trials, whilst across-trial variability in drift 477 

rate was kept constant. In the eta model, the degree of across-trial variability in drift rate was 478 

allowed to vary whilst within-trial variability was kept constant.  479 

In the sigma model, the degree of within-trial variability in the decision process was 480 

allowed to vary across low and high absolute evidence trials, whilst across-trial variability in drift 481 
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rate was kept constant. In the eta model, the degree of across-trial variability in drift rate was 482 

allowed to vary whilst within-trial variability was kept constant.  483 

In previous modelling work, variation in the drift rate, eta, and sigma parameters across 484 

absolute evidence levels was tightly constrained. In particular, the parameter values were directly 485 

determined from the underlying stimulus luminance values (Ratcliff, Voskuilen, & Teodorescu, 486 

2018; Teodorescu et al., 2016). In the current study, whilst we adopted the overarching 487 

assumption that these parameters varied across absolute evidence conditions, we did not 488 

constrain this variation to be a function of the underlying stimulus luminance values. In 489 

principle, this affords the models a greater (and potentially unreasonable) degree of flexibility. 490 

However, we believe that allowing these models to be maximally flexible helps rule out any 491 

concern that poor model fits are simply due to the specific nature of the constraints being put on 492 

the condition varying parameters. 493 

4.4.2 DDM model fitting 494 

Both the sigma and eta models were fit to initial response proportions, initial response 495 

time quantiles (0.1 0.3 0.5 0.7 0.9), change-of-mind proportions (proportion corrected errors and 496 

proportion spoilt responses) and change-of-mind latency quantiles simultaneously. This was 497 

carried out in MATLAB with custom code which implemented a discrete approximation of the 498 

extended diffusion model (6.667 ms timesteps, 1,000,000 trials per iteration). We adopted the 499 

simplifying assumption that the non-decision time was the same for initial and change-of-mind 500 

responses. In fitting the models, we collapsed across left and right responses. Hence, the starting 501 

point parameter was fixed to half the boundary separation parameter. Initially, we included 502 

across-trial-variability in starting point in both models; however, this resulted in a number of the 503 

parameter estimates converging to the limits of the parameter space. We therefore omitted this 504 

assumption from the final models.  505 

Group averaged response proportions and vincentised response time quantiles for both 506 

initial responses and change-of-mind responses, were used to fit the models. We note that in 507 
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certain contexts it is more appropriate to consider individual level data (Liew, Howe, & Little, 508 

2016). However, it has consistently been shown that for similar experimental designs, parameter 509 

estimates obtained from group-averaged data are closely matched to the average of parameters 510 

estimates obtained on the individual level (Ratcliff & McKoon, 2008; Ratcliff, Thapar, & 511 

McKoon, 2001, 2003, 2004). Moreover, given that changes of mind were relatively rare, we were 512 

concerned that individual level measures of change-of-mind timing and frequency would not 513 

yield precise and reliable model estimates. When fitting both initial and change-of-mind 514 

responses, the discrepancy between the data and model predictions was quantified as the root 515 

mean squared error between actual and simulated data. A simplex function (Nelder & Mead, 516 

1965) was used to minimize this value. All code used to simulate and fit the models is available at 517 

https://osf.io/sr58p/.’ 518 

4.4.3 DDM modelling results 519 

Both models fit the initial responses well (Fig 6). In particular, both could recreate the 520 

qualitative pattern of responding across the stimulus conditions in each experiment (i.e. faster 521 

and less accurate responses in the high, compared to low, absolute evidence conditions).  522 
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Fig 6. Model fits for the initial responses. Plots A) and B) show the group-averaged data for initial 523 
responses in experiment 1, as well as the predictions from A) the sigma model and B) the eta model. Plots 524 
C) and D) show the group-averaged data for initial responses in experiment 2, as well as the predictions 525 
from the C) sigma model and D) eta model. In all plots, response proportions are plotted on the x-axis 526 
and response time quantiles are plotted on the y-axis. The hollow symbols denote the empirical data, and 527 
the solid symbols denote model predictions. Yellow data points are used to represent data from the low 528 
absolute evidence condition and blue data points are used to represent data from the high absolute 529 
evidence condition. Circular symbols denote correct responses and square symbols denote incorrect 530 
responses.  531 

Interestingly, whilst the two models captured the pattern of responding across conditions 532 

relatively well, they both predicted that correct responses would be slightly faster than error 533 

responses, when in fact errors tended to be slightly faster than correct responses. We note that, 534 

with the same stimulus manipulation, this pattern of responding was also observed by Ratcliff et 535 

al. (2018), and that this feature was also not captured in their model fits. This may therefore be a 536 

general limitation of these models.  537 

When considering the estimated drift rates, both models behave as if there is 538 

compressive nonlinear perceptual scaling within the decision process. For the sigma model, the 539 
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drift rates are negatively related to absolute evidence in Experiment 1, but are almost identical 540 

across the stimulus conditions in Experiment 2. This is consistent with logarithmic scaling of 541 

perceptual inputs, resulting in a smaller perceived difference in luminance for additive, but not 542 

multiplicative, stimulus manipulations. For the eta model, the drift rates are negatively related to 543 

absolute evidence in Experiment 1, indicating a compressive nonlinearity within the decision 544 

process. However, in Experiment 2 the drift rate is larger in the high absolute evidence 545 

condition, compared to the low condition, suggesting that the increase in the objective amount 546 

of relative evidence outweighs the impact of the underlying compressive nonlinearity. 547 

Table 1. Parameter estimates for the sigma model and eta model for both experiments.  548 

Experiment 1 

 a Ter st ηlow ηhigh vlow vhigh 𝜎low 𝜎high aCoM tCoM RMSE 

Sigma  0.080  0.349  0.281  0.300  0.300  0.141  0.052  0.1 0.118 0.119 0.721 0.3428 

Eta  0.069 0.349 0.279 0.014 0.308 0.095 0.064 0.1 0.1 0.104 0.720 0.3178 

Experiment 2 

 a Ter st ηlow ηhigh vlow vhigh 𝜎low 𝜎high aCoM tCoM RMSE 

Sigma  0.075 0.403 0.262 0.387 0.387 0.352 0.365 0.1 0.121 0.126 0.735 0.2821 

Eta  0.072 0.411 0.287 0.469 0.666 0.424 0.491 0.1 0.1 0.114 0.754 0.2252 

The parameters were estimated by simultaneously fitting the initial responses and change of mind 549 
responses. a is the boundary separation parameter, Ter is the non-decision time parameter (s), st is the 550 
parameter specifying the range of across-trial-variability in non-decision time (assumed to be uniform), 551 
𝜂low and 𝜂high are the across-trial variability in drift rate parameters for low and high absolute evidence trials 552 
(assumed to be normally distributed), vlow and vhigh are the drift rates for low and high absolute evidence 553 
trials, 𝜎low and 𝜎high are the within trial noise parameters for low and high absolute evidence trials (𝜎low 554 
was fixed to 1 for the sigma model), aCoM is the distance of the change of mind threshold from the initial 555 
decision bound, tCoM is the additional processing time parameter which specifies how much additional 556 
evidence is processed, and RMSE is the root mean squared deviation of the simulated and actual data.  557 

4.4.4 DDM fit for change-of-mind responses 558 
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The sigma model fit the patterns of change-of-mind responses poorly. This model could 559 

not capture the qualitative changes in either the frequency or timing of changes of mind across 560 

absolute evidence conditions (see Fig 7). In particular, across both experiments this model 561 

predicted that changes of mind would be faster and more frequent in high absolute evidence 562 

trials. The eta model in comparison performed slightly better. This model was able to predict, at 563 

least qualitatively, the unexpected interaction between initial response accuracy and absolute 564 

evidence which we observed in Experiment 1 (see Fig 7E). However, it underestimated the 565 

proportion of corrected errors in Experiment 2, and, like the sigma model, it also tended to 566 

incorrectly predict that changes of mind would be faster rather than slower on higher absolute 567 

evidence trials. As such, neither model provided a comprehensive account of the effects of 568 

absolute evidence magnitude on change-of-mind responses.  569 

Fig 7. Change-of-mind responses and model predictions. Panels A) and B) show the group averaged 570 
data for change-of-mind responses in Experiment 1. Panels C) and D) show the predictions from the 571 
sigma model, whilst Panels E) and F) show the predictions from the eta model. Panels G) and H) show 572 
the group averaged data for change-of-mind responses in Experiment 2. Panels I) and J) show the 573 
predictions from the sigma model, whilst K) and L) show the predictions from the eta model. In all plots, 574 
yellow denotes data from the low absolute evidence condition and blue denotes data from the high 575 
absolute evidence condition. Dashed lines indicate corrected error trials (i.e. changes away from an 576 
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initially incorrect response), whilst solid lines indicate spoilt responses (i.e. changes away from an initially 577 
correct response). Error bars indicate the SEM.   578 

4.5 An extended Leaky Competing Accumulator (LCA) model  579 

The final model we considered was the Leaky Competing Accumulator (LCA) model 580 

(Usher & Mcclelland, 2001). This model has been shown to account for the effect of absolute 581 

evidence on one-off perceptual decisions, so is important to consider when searching for an 582 

account of the current findings (Teodorescu et al., 2016). In this model, like in the attractor 583 

network and neural circuit models, two competing accumulators encode the evidence for each 584 

decision alternative. When the activity of one accumulator crosses a threshold level, an initial 585 

decision is made. In our extension of the LCA model, we assumed that the decision process then 586 

continues to unfold, and, if the activity of the initially unsuccessful accumulator then crossed the 587 

decision threshold, and predominated (i.e. was higher than the activity of the initially winning 588 

accumulator), then a change of mind occurs (see Evans, Dutilh, Wagenmakers, & Maas, 2019 for 589 

related work). 590 

4.5.1 LCA model specifics 591 

In fitting the LCA model, the starting point of each accumulator on each trial was 592 

determined by a uniformly distributed random value with a mean of 0.1 and a range of Sz. 593 

Increases in absolute evidence were assumed to lead to increases in the shared input to each 594 

accumulator (I). The activity of each accumulator was half-wave rectified (i.e. limited to a 595 

minimum 0). As in the DDM analysis above, we allowed the drift rate (i.e. the additional input to 596 

the accumulator associated with the correct response; v) to vary across the absolute evidence 597 

conditions. This was to account for the possibility of a nonlinear perceptual transformation 598 

within the decision process (see section 4.1.1). After preliminary fits, we found it was necessary 599 

to assume that the amount of leakage (k) in the decision process differs across the stimulus 600 

conditions, to capture the slowing of change-of-mind responses with increased absolute 601 

evidence. Leakage—a key feature of the LCA model—refers to the dissipation of information 602 
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over time from the decision process. This reflects the exponential decay in neural firing that has 603 

been observed in neurophysiological experiments (Usher & Mcclelland, 2001). Finally, the 604 

amount of lateral inhibition (β) between the decision accumulators was fixed across stimulus 605 

conditions. 606 

Unlike in the DDMs, we did not need to assume the presence of a second decision 607 

threshold for changes of mind, nor did we need to assume that there was a time-limit on the 608 

processing of post-decisional evidence. Instead, we could simply assume that if the activity of the 609 

initially unsuccessful accumulator crossed the initial decision threshold at any point in the post-610 

decision period, and predominated (i.e. was higher than the activity of the initially winning 611 

accumulator), then a change of mind would occur.  612 

4.5.2 LCA model fitting 613 

The LCA model was fit to group-average initial response proportions, initial response 614 

time quantiles, change-of-mind proportions and change-of-mind latency quantiles 615 

simultaneously. This was carried out in MATLAB with custom code available at 616 

https://osf.io/sr58p/ (13.33 ms timesteps, 1,000,000 trials per iteration). As in the DDM 617 

analysis above, we adopted the simplifying assumption that the non-decision time was the same 618 

for initial and change-of-mind responses. The discrepancy between the data and model 619 

predictions was again quantified as the root mean squared error between actual and simulated 620 

data and a simplex function (Nelder & Mead, 1965) was used to minimize this value. 621 

4.5.3 LCA modelling results 622 

 The LCA model captured the initial response patterns across the stimulus conditions (Fig 623 

8). In particular, it was able to predict the speed up in response times and decrease in accuracy 624 

which we observed with increases in absolute evidence magnitude. 625 
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Fig 8. Initial responses and LCA model predictions. Panels A) and B) show the group averaged data 626 
for initial responses in Experiments 1 and 2 as well as the predictions from the LCA model. In all plots, 627 
response proportions are plotted on the x-axis and response time quantiles are plotted on the y-axis. The 628 
hollow symbols denote the empirical data, and the solid symbols denote model predictions. Yellow data 629 
points are used to represent data from the low absolute evidence condition and blue data points are used 630 
to represent data from the high absolute evidence condition. Circular symbols denote correct responses 631 
and square symbols denote incorrect responses.  632 

Considering the estimated drift-rate parameters for the LCA model, it is clear that this 633 

model again behaves as if there is a compressive nonlinearity within the decision process. This is 634 

because the drift rates are negatively associated with absolute evidence in Experiment 1 but are 635 

practically identical in Experiment 2 – consistent with roughly logarithmic scaling of sensory 636 

inputs. 637 

Table 2. Parameter estimates for the LCA model for both experiments.  638 

Experiment 1  

B Ter st Ilow Ihigh vlow vhigh klow khigh β Sz RMSE 

0.391 0.318 0.268 0.019 0.035 0.019 0.007 0.014 0.035 0.900 0.161 0.259 

Experiment 2 

B Ter st Ilow Ihigh vlow vhigh klow khigh β Sz RMSE 

0.437 0.350 0.218 0.020 0.037 0.036 0.035 0.039 0.071 0.702 0.171 0.46 

The parameters were estimated by simultaneously fitting the initial responses and change of mind 639 
responses. B is the decision threshold parameter, Ter is the non-decision time parameter (s), st is the 640 
parameter specifying the range of across-trial-variability in non-decision time (assumed to be uniform), low 641 
Ilow and Ihigh specify the share input to each decision accumulator parameters in the low and high absolute 642 
evidence trials, vlow and vhigh are the drift rates for low and high absolute evidence trials (i.e. the additional 643 
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input into the correct accumulator), klow and khigh are the leak parameters for the low and high absolute 644 
evidence trials, β is lateral inhibition parameter, Sz starting point variability parameter (specifying the 645 
range of a uniform distribution around a mean value of 0.1), and RMSE is the root mean squared 646 
deviation of the simulated and actual data.  647 

4.5.4 LCA fit for the change-of-mind responses 648 

For both experiments, the LCA model was able to capture the main qualitative changes 649 

in the timing and frequency of changes of mind across the stimulus conditions (see Fig 9). 650 

Notably, this model was able to predict the slowing of changes of mind with increases in 651 

absolute evidence – a behavioural feature which neither of the DDM’s could fully capture. 652 

Nevertheless, there were still some features of the data that the LCA model could not capture. In 653 

particular, this model struggled to fully capture the change-of-mind response times in 654 

Experiment 2. Whilst it could predict the general slowing in change-of-mind response times with 655 

higher absolute evidence, it incorrectly predicted that for spoilt responses (i.e. changes away 656 

from a correct initial response) the effect of absolute evidence on change-of-mind speed grows 657 

with time (Fig 9. H). Similarly, the model was also unable to capture the crossover of the change 658 

time distributions (i.e. the broader distribution of response times for corrected errors).  659 
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Fig 9. Change-of-mind responses and LCA model predictions. Panels A) and B) show the group 660 
averaged data for change-of-mind responses in Experiment 1. Panels C) and D) show the predictions of 661 
the LCA model for change-of-mind proportions and change-of-mind response time respectively. Panels 662 
E) and F) show the group averaged data for change-of-mind responses in Experiment 2. Panels G) and 663 
H) show the LCA model. In all plots, blue denotes data from high absolute evidence trials, yellow denotes 664 
data from low absolute evidence trials, dashed lines indicate trials in which the initially response was 665 
incorrect and solid lines denote trials in which the initial response was correct (spoilt responses). Error 666 
bars indicate SEM.  667 

4.5.5 LCA predictions for choice consistency 668 

Since the LCA model was best able to capture the effects of absolute evidence on the 669 

participants’ behaviour, we examined whether this model could also account for the changes in 670 

choice-consistency across the absolute evidence conditions. To this end, we decomposed the 671 

within-trial variability in the model into two components. One component we termed ‘internal 672 

variability’, which accounts for variability in the decision process which differs across stimulus 673 

repetitions (e.g., fluctuations in attention or neural firing). The other component we termed 674 

‘external variability’, which accounts for stimulus-driven variability (i.e. the random flicker in the 675 

two squares). Critically, this variability component is assumed to be identical across stimulus 676 
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repetitions. By varying the ratio of these two variability components, whilst keeping combined 677 

variability (σ) fixed to 0.1 (as in the fitting procedure), we found it was possible to account for 678 

the choice-consistency patterns in each experiment (Fig 10). For Experiment 1, the decrease in 679 

choice consistency could be captured by a ratio of external to internal variability of ~0.4. For 680 

Experiment 2, the results could be captured with a ratio of ~0.75. The higher ratio of external to 681 

internal variability in Experiment 2, compared to Experiment 1, may be due to the fact there was 682 

more relative evidence in Experiment 2 (i.e. the stimuli were more discriminable), leading 683 

participants to place more weight on stimulus fluctuations. Alternatively, Poisson-like encoding 684 

of relative evidence strength could also explain the increase in stimulus-driven variability (as 685 

stronger evidence would lead to more variable encoding).  686 

 687 
Fig 10. LCA model predicts choice consistency. These plots show the group averaged data for 688 
proportion of initial correct initial responses (y-axis) and the proportion of responses that were repeated 689 
when participants were presented with an exact stimulus repetition (x-axis). The dots with the error bars 690 
(indicating SEM) denote the actual data, whilst the dots joined by the black lines represent the model 691 
predictions.  692 

5. Discussion 693 
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In this study, we report that the timing and accuracy of perceptual change-of-mind 694 

decisions are affected by variations in absolute evidence magnitude. We show that the observed 695 

pattern of effects cannot be accounted for by existing change-of-mind models, nor by two 696 

modified DDMs which previously have been used to account for the effect of absolute evidence 697 

on one-off perceptual decisions. Out of the models we examined, the best account of the 698 

behavioural findings is given by an extended LCA model in which leak is positively associated 699 

with absolute evidence magnitude. This suggests that input-dependent leak, and the dynamics of 700 

lateral inhibition, are important factors in accounting for perceptual changes of mind. 701 

5.1 How plausible is the extended LCA model? 702 

Given that the LCA model provided the best account of the current data, it is worth 703 

examining the core assumptions of this model in greater detail. To account for the effects of 704 

absolute evidence, three main assumptions needed to be made: First, increases in absolute 705 

evidence lead to greater mutual input to the decision accumulators. Second, increases in absolute 706 

evidence lead to decreases in drift rate (i.e. decreased relative evidence) – particularly with 707 

additive stimulus manipulations where evidence ratios are not conserved. Finally, it was also 708 

necessary to assume that leak was positively associated with absolute evidence magnitude. The 709 

first two assumptions are relatively straightforward – the second being consistent with a Weber-710 

like compressive nonlinearity in the decision process (see section 5.7). However, the third 711 

assumption was somewhat arbitrary and deserves further consideration.  712 

One way of further testing the plausibility of the extended LCA model would be to 713 

examine the patterns of neural activity which occur when manipulating absolute evidence. With 714 

increases in absolute evidence, the LCA model predicts that the average activity of decision-715 

selective neural pools will decrease (see Fig A.2 in the supplementary materials). This is the case 716 

even when the drift rate between stimulus conditions is identical (i.e. when the amount of 717 

‘perceived’ relative evidence is matched). Interestingly, recordings from neurons in area MT 718 

during transparent dot motion (i.e. the presentation of dot stimuli which are moving in opposing 719 
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directions) support this prediction, with increases in bi-directional motion (i.e. increases in 720 

absolute evidence) leading to decreases in the firing rate of motion-selective neurons (see 721 

Snowden, Treue, Erickson, & Andersen, 1991 Fig 12). However, whether this holds for 722 

manipulations of other forms of absolute evidence (e.g., luminance) remains to be seen.  723 

5.2 Using neural variability to distinguish between competing models  724 

  Recordings of neural activity could also be used to further arbitrate between the 725 

modelling frameworks considered in the current paper. In particular, measures of firing-rate 726 

variability would help to distinguish whether the effects of absolute evidence are best understood 727 

as resulting from the effects of input-dependent noise or the dynamics of leak and lateral 728 

inhibition. Both the sigma and eta models (which include input-dependent noise sources) predict 729 

that the variability of the decision process will increase in conditions of high absolute evidence. In 730 

contrast, the LCA and attractor network models predict that with higher absolute evidence, there 731 

will be less variation in firing rate across trials (see Albantakis & Deco, 2011 and Fig A.3 in the 732 

supplementary materials). Given this, if future studies examined firing rate variability across 733 

conditions of high and low absolute evidence, this would provide a strong test of whether the 734 

behavioral effects of absolute evidence manipulations are best explained by input-dependent noise 735 

or the dynamics of leak and lateral inhibition.  736 

5.3 Do change-of-mind mechanisms account for evidence variability? 737 

Both the eta and sigma models rely on the assumption that input-dependent noise, 738 

varying either within or across trials, underlies the effects of absolute evidence on initial 739 

responses. If this assumption is correct, the fact that we observed either a decrease (main effect 740 

in Experiment 1) or no difference (Experiment 2) in the proportion of changes of mind with 741 

increases in absolute evidence may point to an adaptive change-of-mind mechanism which 742 

attempts to avoid costly vacillation. Recently, it has been proposed that an explicit representation 743 

of evidence reliability could be encoded in the decision process (Yeung & Summerfield, 2012). If 744 
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this is true, then such a representation could plausibly be drawn upon to flexibly adjust the 745 

change of mind threshold within the course of a single trial. When evidence is noisy the 746 

threshold for changing one’s mind could be set higher than when evidence is reliable, so as to 747 

avoid unnecessary changes of mind. Such a mechanism would make it possible to simultaneously 748 

capture the speed-up in initial response time (due to the effect of input dependent noise) and the 749 

slow-down in changes of mind (as with a higher threshold, more evidence, and thus time, is 750 

required to overrule a decision).  751 

5.4 Does the change of mind threshold depend on initial confidence? 752 

Plausibly, the position of the change-of-mind threshold may also depend on initial 753 

decision confidence. For high confidence decisions the change-of-mind threshold may be set 754 

further away from the initial decision threshold, than for low confidence decisions. This would 755 

result in more contradictory evidence being required to overrule high confidence decisions. 756 

Previously, it has been shown that initial response time is often negatively associated with 757 

decision confidence, whereby confidence is greater for fast decisions (Kiani, Corthell, & Shadlen, 758 

2014). In the current study, participants’ initial response times were faster in high absolute 759 

evidence trials, compared to low absolute evidence trials. It is therefore possible that participants 760 

had an inflated sense of confidence in their initial decisions on high absolute evidence trials, 761 

despite being objectively less accurate. Consequently, participants may have set higher change-of-762 

mind thresholds. This offers an alternative explanation as to why changes of mind were slower 763 

on high absolute evidence trials, as more time would be needed to accumulate the additional 764 

evidence. However, this would also predict fewer changes of mind (of both types) with higher 765 

absolute evidence, which is not consistent with our observations. As such, a dynamic change-of-766 

mind threshold alone cannot account for the current data. However, future work could consider 767 

whether a dynamic threshold, in concert with other mechanisms, might capture the current 768 

observations.  769 

5.5 Can a metacognitive bias towards decision-congruent evidence explain the results? 770 
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Recently, a number of studies have demonstrated that humans overweight decision-771 

congruent information when rating their confidence in a previous perceptual decision (Koizumi, 772 

Maniscalco, & Lau, 2015; Maniscalco, Peters, & Lau, 2016; Peters et al., 2017; Zylberberg, 773 

Barttfeld, & Sigman, 2012). For example, when asked to judge how confident they are that they 774 

correctly chose the brighter of two squares, participants will tend to ignore information which 775 

provides evidence against their choice (i.e. the brightness of the unchosen square), and instead 776 

focus on information which is decision-congruent (i.e. the brightness of the chosen square; 777 

Zylberberg et al., 2012). Under the assumption that one’s confidence in their initial decision 778 

affects the position of their change-of-mind threshold, a bias towards decision-congruent 779 

information also offers an explanation for the change of mind latency effects which we 780 

observed. In particular, on high absolute evidence trials the chosen square will be brighter, 781 

leading participants to be more confident. If, as a consequence of this increase in confidence, 782 

they then set a higher threshold for changing their mind, those responses will slow down. 783 

However, as we noted above, this view cannot explain the interaction between initial response 784 

accuracy and absolute evidence (i.e. the increase in the number of spoilt responses). If the 785 

change-of-mind threshold is higher, then the number of spoilt responses should decrease. 786 

Finally, it cannot explain why the proportion of changes of mind was unaffected by a 787 

multiplicative stimulus manipulation. As such, a bias towards-decision congruent information 788 

alone cannot account for the current findings.  789 

5.6 Are changes of mind driven by a second order process? 790 

 The current results do not rule out the possibility that changes of mind arise from a 791 

second order process (i.e. a process which is, at least partially, distinct from the initial decision 792 

process). Indeed, the fact that increases in absolute evidence had opposing effects on the timing 793 

of initial decisions and change-of-mind decisions may suggest a dissociation between the 794 

processes which underlie these two responses (Fleming & Daw, 2017). From the modelling 795 

results, it is clear that input-dependent noise can explain the speed-up in initial response times 796 
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across conditions. However, models that incorporate input-dependent noise also tend to predict 797 

faster, rather than slower, change-of-mind latencies. Given this, frameworks built on partial 798 

dissociations between the initial decision process and the change-of-mind process, where the 799 

change-of-mind process does not share all the dynamics of the initial decision process (e.g. does 800 

not inherit input-dependent noise), may be better suited to accounting for the different response 801 

time effects. Nevertheless, the fact that the extended LCA model was able to predict the 802 

simultaneous speeding and slowing of initial and change of mind response demonstrates that it is 803 

possible to explain the opposing response time effects within a single decision process. 804 

5.7 Weber’s law 805 

It is worth considering the current results with respect to Weber’s law. According to 806 

Weber’s law, the just-noticeable difference between two stimuli is inversely proportional to the 807 

overall intensity of the two stimuli (i.e. to absolute evidence magnitude). For the current study, 808 

this means that the perceived difference in luminance between the stimuli in the high absolute 809 

evidence condition will have been diminished compared to the perceived difference between the 810 

stimuli in the low condition (at least in Experiment 1 where evidence ratios were not conserved). 811 

Indeed, the reason we allowed the drift rates (representing relative evidence strength) to vary 812 

across stimulus conditions in all fitted models was to account for this very possibility. 813 

Considering the fitted drift rates for all models, the parameter values indeed suggest the presence 814 

of a compressive nonlinearity within the decision process, which is roughly consistent with 815 

logarithmic scaling of perceptual inputs. Critically however, the effect of a compressive 816 

nonlinearity alone cannot fully account for our findings. This is because, whilst a compressive 817 

nonlinearity causes initial decisions to be less accurate in trials with higher absolute evidence, it 818 

also causes initial responses to be slower, not faster as we reliably observed. Given this, we 819 

conclude that our absolute evidence manipulations are having an effect over and above the effect 820 

of a diminished perceptual difference between the stimuli in high absolute evidence trials.  821 
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So what is this additional effect? For the LCA model we assumed that increases in 822 

absolute evidence also led to greater shared input to the decision accumulators as well as greater 823 

leak – allowing us to capture the simultaneous speeding and slowing of initial and change-of-824 

mind responses. For the DDMs we assumed that increases in absolute evidence lead to greater 825 

variability, allowing us to capture the speeding of initial responses. However, this also caused the 826 

models to incorrectly predict a speeding of change-of-mind responses.  827 

Given that the difference in overall luminance between the high and low absolute 828 

evidence conditions was quite large, one could alternatively argue that participants may have 829 

adopted condition-dependent strategies, for example in the setting of their initial decision 830 

threshold, and that this may explain the changes in behaviour we observed, over and above those 831 

driven by nonlinear transformation of perceptual inputs. For example, if participants had 832 

adopted a lower decision threshold in response to brighter stimuli, this could explain the 833 

decrease in accuracy and response time we observed. However, our results for initial responses 834 

are in line with Teodorescu et al. (2015) and Ratcliff et al. (2019), who used more closely 835 

overlapping stimulus distributions, which could not have been easily discriminated. Moreover, to 836 

our knowledge there is no evidence that it is possible to make sub-second, reactive decision 837 

threshold adjustments (as would be required in our task). Finally, even if it is possible to 838 

implement such a strategy, participants would have been incentivised against doing so by the 839 

feedback telling them they were already less accurate at judging between brighter stimuli. Hence, 840 

we argue that our results are not best explained by condition-dependent strategy use. Given that 841 

the LCA model was best able to account for the current findings, the effect of absolute evidence 842 

magnitude on behaviour is best understood in terms of the combined effects of nonlinear 843 

perceptual scaling, increased mutual input to the decision accumulators, and input-dependent 844 

leak.  845 

For our simulation of the Neural Circuit model, it is important to note that the amount 846 

of relative evidence was assumed to be constant across stimulus conditions. This was in keeping 847 
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with the simulations conducted by Albantakis and Deco (2011) for the predictions of the 848 

Attractor network model across changes in absolute evidence magnitude. Further modification 849 

and fitting of the Attractor Network and Neural Circuit models was beyond the scope of this 850 

paper, due to their sheer complexity. However, future theoretical work could examine whether 851 

these models, or other related models (e.g., Pais et al., 2013), with additional modifications (i.e. 852 

nonlinear scaling of sensory inputs) can better account for the current behaviour. Given the 853 

similarities between the LCA and these models, it is possible that with the same set of additional 854 

assumptions as those of the extended LCA (i.e. changes in drift and leak across conditions), they 855 

may offer a similar account of the current findings. 856 

5.8 Limitations 857 

The findings of our study should be interpreted with the following limitations in mind. 858 

First, behavioural responses were recorded using button presses rather than by tracking 859 

continuous movement trajectories, as has been done in a number of previous studies 860 

investigating changes of mind (Burk et al., 2014; Moher & Song, 2014; Resulaj et al., 2009; van 861 

den Berg et al., 2016). Tracking movement trajectories has the advantage that changes of mind 862 

can be more directly observed, for example in a change of direction or slowing of the 863 

movement. However, by recording button presses, we were afforded with a unique opportunity 864 

to characterise the onset times of change-of-mind responses. This has not been done in previous 865 

change-of-mind studies as responses were made unimanually, making it more difficult to define 866 

the point at which the change of mind began (Albantakis et al., 2012; Burk et al., 2014; Moher & 867 

Song, 2014; Resulaj et al., 2009; van den Berg et al., 2016). Overall, the results of the current 868 

study suggest that accounting for the latencies of changes-of-mind decisions constitutes a critical 869 

test of computational models, which has been overlooked in previous work.  870 

Another potential limitation of this study is that we imposed time limits for initial 871 

responses (800ms) and changes of mind (1s). The limit for initial responses was imposed as a 872 

means of generating errors, and consequently changes of mind (Resulaj et al., 2009). Not 873 
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implementing any deadline at all would have encouraged the use of a very liberal decision 874 

criterion, which would make changes of mind unnecessary. However, as a result of the deadline 875 

the response time distributions will have been censored (i.e. the tails of the distributions will 876 

have been cut off). It is also possible that participants may have adopted a hybrid decision 877 

strategy involving an accumulation to bound mechanism plus a fast guessing process, which was 878 

triggered in the case of long decision times (e.g. Noorbaloochi, Sharon, & McClelland, 2015). 879 

This would have provided a means of circumventing the deadline to avoid a high number of 880 

missed responses, and offers an explanation as to why errors were faster than correct responses. 881 

Future theoretical work may therefore consider exploring whether novel models, based on 882 

hybrid decision processes which include a random guessing mechanism, are better able to 883 

capture the observed data.  884 

Finally, because participants did not undergo training prior to each experiment, their 885 

behavioural performance was not completely stationary across blocks (Fig A.1 in the 886 

supplementary materials shows the proportion of changes of mind across time in both 887 

experiments). This non-stationarity is important to consider, particularly when interpreting the 888 

results of double-pass analyses – which often rely on the assumption of stationarity. However, 889 

since the critical comparison for our double-pass analysis was between the two (interleaved) 890 

stimulus conditions, non-stationary behaviour will have equally affected the choice-consistency 891 

estimates for each stimulus condition. As such, the condition-wise differences we observe cannot 892 

be driven by learning-related changes in behaviour across the experiments.  893 

5.9 Conclusion 894 

To conclude, in the current study we have shown that perceptual change-of-mind 895 

decisions are sensitive to variations in absolute evidence. We found that changes of mind are 896 

consistently slower and often less accurate in conditions of high absolute evidence. We have 897 

shown that this pattern of effects is best accounted for by an extended LCA model in which leak 898 

is positively associated with absolute evidence magnitude.  899 
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Table A.1. Parameter estimates for the accuracy and change-of-mind (CoM) regression 1053 

models (Experiment 1).  1054 

  Accuracy CoM 

Predictors Odds Ratios CI p Odds Ratios CI p 

(Intercept) 2.38 2.15 – 2.63 <0.001 0.22 0.12 – 0.38 <0.001 

Condition(1) 0.57 0.54 – 0.61 <0.001 0.48 0.35 – 0.65 <0.001 

Initial RT 1.11 1.04 – 1.17 0.001 0.97 0.85 – 1.11 0.648 

Accuracy(1)  
   

0.09 0.05 – 0.15 <0.001 

Condition:Accuracy 
   

4.32 2.85 – 6.55 <0.001 

Note: This table was made using the tab_model function in the sjPlot R package (Lüdecke, 1055 

2018).  1056 
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Table A.2. Parameter estimates for the initial response time and change time regression 1057 

models (Experiment 1).  1058 

  Initial RT Change Time  

Predictors Estimates CI p Estimates CI p 

(Intercept) 0.47 0.44 – 0.50 <0.001 0.46 0.41 – 0.51 <0.001 

Condition(1)  -0.01 -0.02 – -0.01 <0.001 0.04 0.02 – 0.05 <0.001 

Accuracy(1)  0.01 0.01 – 0.01 <0.001 -0.05 -0.07 – -0.03 <0.001 

Initial RT 
   

-0.02 -0.09 – 0.05 0.584 

Note: This table was made using the tab_model function in the sjPlot R package (Lüdecke, 1059 

2018).   1060 
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Table A.3. Parameter estimates for the accuracy and change-of-mind (CoM) regression 1061 

models (Experiment 2).  1062 

  Accuracy CoM 

Predictors Odds Ratios CI p Odds Ratios CI p 

(Intercept) 5.01 4.22 – 5.95 <0.001 0.53 0.31 – 0.90 0.018 

Condition(1)  0.82 0.77 – 0.87 <0.001 0.94 0.71 – 1.24 0.665 

Initial RT 0.93 0.85 – 1.02 0.123 1.00 0.90 – 1.12 0.958 

Accuracy(1) 
   

0.02 0.02 – 0.04 <0.001 

Condition:Accuracy 
   

0.96 0.61 – 1.51 0.850 

Note: This table was made using the tab_model function in the sjPlot R package (Lüdecke, 2018)  1063 
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Table A.4. Parameter estimates for the initial response time and change time regression 1064 

models (Experiment 2).  1065 

  Initial RT Change Time 

Predictors Estimates CI p Estimates CI p 

(Intercept) 0.50 0.49 – 0.52  <0.001 0.42 0.37 – 0.47  <0.001 

Condition(1)  -0.010 -0.02 – 0.00 0.002 0.04 -0.03 – 0.06 <0.001 

Accuracy(1)  -0.00 -0.00 – 0.00 0.936 0.01 -0.01 – 0.03 0.339 

Initial RT 
   

-0.03 -0.10 – 0.05 0.455 

  1066 
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Table A.5. Parameter estimates for the choice consistency models.  1067 

  Consistency (Exp. 1) Consistency (Exp. 2) 

Predictors 
Odds 

Ratios 
CI p 

Odds 

Ratios 
CI p 

(Intercept) 1.04 0.86 – 1.26 0.683 0.88 0.72 – 1.07 0.201 

Condition(1)  0.81 0.68 – 0.96 0.015 0.91 0.81 – 1.03 0.135 

Accuracy(1) 2.20 2.03 – 2.38 <0.001 6.92 6.29 – 7.61 <0.001 

Initial RT 0.89 0.85 – 0.93 <0.001 0.83 0.80 – 0.87 <0.001 

Note: This table was made using the tab_model function in the sjPlot R package (Lüdecke, 2018)  1068 
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 1069 

Fig A.1. Changes of mind as a proportion of correct and error responses, across the course of 1070 
each experiment. The proportion of changes of mind cross 5 stages of each experiment (i.e. for 1071 
neighbouring pairs of runs) is plotted separately for correct and error responses. Low absolute evidence 1072 
trials are shown in orange and high absolute evidence trials are shown in blue. Dashed histograms 1073 
indicate trials in which the initial response was an error (‘corrected errors’), solid histograms indicate trials 1074 
in which the initial response was correct (‘spoilt correct’).  Interestingly, there is a general trend towards 1075 
both types of changes of mind becoming more common as the each experiment progresses. The relative 1076 
pattern of changes of mind between the absolute evidence conditions remains constant across these 5 1077 
stages of the task, suggesting that the effect of absolute evidence has little to do with learning.    1078 
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Fig A.2. Average activity in the winning accumulator of the LCA model. We simulated 300,000 1079 
trials of the LCA model using the parameter estimates from each experiment. We then plotted the 1080 
average activity in the winning accumulator on correct trials across time. Blue lines denote activity on high 1081 
absolute evidence trials and yellow lines denote activity on low absolute evidence trials.   1082 
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Fig A.3. Variance of the activity in the winning accumulator of the LCA model. We simulated 1083 
300,000 trials of the LCA model using the parameter estimates from each experiment. We then plotted 1084 
the variance of the activity in the winning accumulator on correct trials across time. Blue lines denote 1085 
activity on high absolute evidence trials and yellow lines denote activity on low absolute evidence trials.  1086 


