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Abstract 1 

Hierarchical predictive coding networks are a general model of sensory processing in the brain. 2 

Under neural delays, these networks have been suggested to naturally generate oscillatory 3 

activity in approximately the alpha frequency range (~8-12 Hz). This suggests that alpha 4 

oscillations, a prominent feature of EEG recordings, may be a spectral ‘fingerprint’ of 5 

predictive sensory processing. Here, we probed this possibility by investigating whether 6 

oscillations over the visual cortex predictively encode visual information. Specifically, we 7 

examined whether their power carries information about the position of a moving stimulus, in 8 

a temporally predictive fashion. In two experiments (N = 32, 18 female; N = 34, 17 female), 9 

participants viewed an apparent-motion stimulus moving along a circular path, while EEG was 10 

recorded. To investigate the encoding of stimulus-position information, we developed a 11 

method of deriving probabilistic spatial maps from oscillatory power estimates. With this 12 

method, we demonstrate that it is possible to reconstruct the trajectory of a moving stimulus 13 

from alpha/low-beta oscillations, tracking its position even across unexpected motion 14 

reversals. We also show that future position representations are activated in the absence of 15 

direct visual input, demonstrating that temporally predictive mechanisms manifest in 16 

alpha/beta-band oscillations. In a second experiment we replicate these findings and show that 17 

the encoding of information in this range is not driven by visual entrainment. By demonstrating 18 

that occipital alpha/beta oscillations carry stimulus-related information, in a temporally 19 

predictive fashion, we provide empirical evidence of these rhythms as a spectral ‘fingerprint’ 20 

of hierarchical predictive processing in the human visual system.   21 
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Significance Statement 22 

‘Hierarchical predictive coding’ is a general model of sensory information processing in the 23 

brain. When in silico predictive coding models are constrained by neural transmission delays, 24 

their activity naturally oscillates in roughly the alpha range (~8-12 Hz). Using time-resolved 25 

EEG decoding, we show that neural rhythms in this approximate range (alpha/low-beta) over 26 

the human visual cortex predictively encode the position of a moving stimulus. From the 27 

amplitude of these oscillations we are able to reconstruct the stimulus’ trajectory, revealing 28 

signatures of temporally-predictive processing. This provides direct neural evidence linking 29 

occipital alpha/beta rhythms to predictive visual processing, supporting the emerging view of 30 

such oscillations as a potential spectral ‘fingerprint’ of hierarchical predictive processing in the 31 

human visual system.   32 
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Introduction 33 

‘Predictive coding’ is a general model of the hierarchical inference process underlying visual 34 

processing (Rao & Ballard, 1999). The functional architecture of the visual system implied by 35 

predictive coding is that of a hierarchical network of interconnected neural populations. The 36 

higher levels of this network attempt to predict the activity of lower levels, with the residuals 37 

of these predictions being passed back upwards.  38 

In the predictive coding literature, the fact that neural signalling takes time has often 39 

been overlooked (but see Friston, 2008; Hogendoorn & Burkitt, 2019). Consideration of this 40 

fact places important constraints on predictive coding models, in that predictions and residuals 41 

can never be transmitted instantaneously, but must rather pass between levels with some delay. 42 

Recent theoretical work has suggested that when biologically plausible signalling delays are 43 

built into hierarchical predictive coding networks, the recursive network dynamics naturally 44 

generate oscillatory activity in approximately the alpha frequency range (~8-12 Hz, with the 45 

precise frequency depending on the signalling delay and neural time constant; Alamia & 46 

VanRullen, 2019). This is important because it suggests that oscillations in this general 47 

frequency range may (in some cases) be a signature of predictive sensory processing, arising 48 

from rhythmic ‘message passing’ between hierarchically-organised neural populations. If this 49 

is true, one might expect features of these rhythms, such as their power (squared amplitude), 50 

to carry information about the underlying stimulus being processed. However, this has yet to 51 

be directly tested. The primary aim of this study was therefore to examine whether the power 52 

of alpha oscillations over the occipital cortex carries stimulus-related information.  53 

One complication which arises when incorporating neural delays into a hierarchical 54 

predictive coding framework is that for time-varying input, backwards predictions will always 55 

conflict with sensory input if neural delays are not accounted for. To effectively minimize 56 

prediction error, information processing must not only be hierarchically predictive, but also 57 

temporally predictive. That is, extrapolation mechanisms are needed that adjust forwards and 58 

backwards signals and correct for the lag incurred during signal transmission (Hogendoorn & 59 

Burkitt, 2019). Consequently, if alpha oscillations are a signature of predictive coding, the 60 

information they carry should display temporally predictive/anticipatory qualities. When prior 61 

expectations about the stimulus can be generated, these rhythms should carry information about 62 

expected input, even in the absence of feed-forward signals. While there is mounting evidence 63 

that neural activity patterns during visual processing do carry predictive information (e.g., 64 

Blom et al., 2020; Kok et al., 2014, 2017; Liu et al., 2021), the spectral locus of such 65 

information has typically not been investigated. 66 
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In the present study, we examined whether and how information about the position of 67 

a predictably moving stimulus manifests in oscillations over the occipital cortex. In two 68 

experiments (N = 32, 34), participants viewed an apparent motion stimulus (i.e. a series of 69 

spatially and temporally separated flashes that generate the percept of coherent motion) 70 

travelling along a circular path while EEG was recorded. In these sequences, the stimulus’ 71 

trajectory was predictable, meaning its future position could be anticipated, although the end 72 

of each sequence was unexpected. Importantly, in a previously published analysis of the dataset 73 

from Experiment 1 we demonstrated that predictions about the upcoming stimulus position 74 

were evident in the EEG signal (Blom et al., 2020). Here, we use a complementary analysis 75 

strategy to investigate whether predictive representations manifest in specific oscillatory 76 

frequency bands. To do so, we develop a method for constructing probabilistic spatial maps 77 

from oscillatory power estimates. With this method, we demonstrate that the location of the 78 

stimulus can be decoded from occipital oscillations in the alpha/low-beta range (peak 79 

information at ~12 Hz). We also observe anticipatory activation of neighbouring unstimulated 80 

position representations at the end of motion sequences, suggesting that the processes 81 

underlying predictive spatial pre-activation manifest in alpha/beta-band oscillations. In a 82 

second experiment, we replicate and extend these findings, ruling out the possibility that the 83 

encoding of information in this range is driven by visual entrainment.  84 

 85 

Materials and Methods 86 

Experiment 1 87 

This experiment includes data collected using two slightly different protocols. Note that 88 

separate investigation of this dataset has been previously reported (Blom et al., 2020, 2021). 89 

 90 

Participants 91 

Twelve observers (6 female, mean age 25 years) participated under the first protocol and twenty 92 

observers (12 female, mean age 23 years) participated under the second protocol. All had 93 

normal or corrected-to-normal vision. Both protocols were approved by the human research 94 

ethics committee of the University of Melbourne (Ethics ID 1954628), Australia. All observers 95 

gave written informed consent prior to participating and were reimbursed AUD15 per hour.  96 

 97 

Procedure 98 

The stimulus was a black, truncated wedge presented on a uniform 50% gray background. The 99 

stimulus could appear in one of eight equally spaced locations around a white central fixation 100 
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point, at 22.5°, 67.5°, 112.5°, 157.5°, 202.5°, 247.5°, 292.5°, and 337.5° of polar angle from 101 

the vertical (Figure 1). Inner and outer edges of the wedge were 6.3° and 7.7° of visual angle 102 

away from fixation, respectively. The wedge covered 11° of polar angle, with 1.3° of visual 103 

angle at the inner and 1.5° of visual angle at the outer edge. The stimulus was presented for 66 104 

ms, with an interstimulus interval of 33 ms and an intertrial interval of 400 ms between 105 

sequences. Stimuli were presented on an ASUS ROG PG258 monitor with a resolution of 1,920 106 

× 1,080 running at 120 Hz. The monitor was controlled by an HP EliteDesk 800 G3 TWR PC 107 

running MATLAB R2017b with PsychToolbox 3.0.14. Participants viewed the stimuli from a 108 

headrest at a distance of 60 cm.  109 

 110 

Task 111 

Participants viewed an apparent motion stimulus moving along a circular trajectory, while EEG 112 

was recorded. After moving for between 3 and 44 flash repetitions (300 ms and 4.4 s), the 113 

stimulus either disappeared or reversed its direction (Figure 1). Participants were tasked with 114 

making a button press whenever the stimulus was coloured red instead of black. This occurred 115 

32 times per block under protocol 1 and 50 times per block under protocol 2. The task was 116 

designed to keep participants engaged with the stimulus and behavioral data were not analyzed. 117 

Under protocol 1, trials with targets were discarded, and target trials were shown again at the 118 

end of each block. Under protocol 2, trials with targets were simply discarded. 119 
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Figure 1. Stimulus display and analysis pipeline. Participants viewed an apparent motion stimulus 120 
moving through 8 positions around a circle. In Experiment 1, the position of the stimulus was updated 121 
every 100 ms (66 ms stimulus on screen, 33 ms ISI). In Experiment 2, the update rate was varied 122 
between 100 ms (10 Hz), 125 ms (8 Hz) and 150 ms (6.67 Hz) by adjusting the ISI. After moving for  123 
between 3 and 44 presentations (300 ms - 4.4 s) the stimulus would either A) disappear or, in a subset 124 
of trials, B) reverse its direction of motion. C) Recordings from 8 occipital electrodes were separated 125 
into a training set (epochs around the first flash in an apparent motion sequence) and a testing set (four 126 
specific epochs: Start, Middle, Stop and Reversal). Complex Morlet wavelet convolution was used to 127 
extract frequency-specific power estimates. For each frequency, LDA classifiers were then trained to 128 
predict the stimulus position from normalized power estimates at each training time point (+50 to +150 129 
ms). Across testing timepoints, the average predicted posterior probabilities for the stimulus occupying 130 
each of the 8 possible positions was then taken. In other words, at each testing timepoint, predicted 131 
posterior probabilities were generated across all pre-trained temporally-specific classifiers (+50 to +150 132 
ms) and the average across these was taken. The data was then re-centred on the presented stimulus 133 
position and one motion direction was ‘flipped’, yielding frequency-specific stimulus-position maps.   134 
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Experimental Design  135 

Under protocol 1, participants completed six blocks of sequences across three testing sessions. 136 

Under protocol 2, participants completed two blocks across two testing sessions. 137 

 138 

Under protocol 1, each block contained the following types of trials, randomly interleaved: 139 

1) Sequences with one, two, or three consecutive presentations starting at each 140 

position and moving in both directions were presented 10 times (3 sequence lengths 141 

× 8 starting positions × 2 directions × 10 repetitions = 480 trials).  142 

2) Sequences with four, five, six, seven, or eight consecutive presentations starting at 143 

each position and moving in both directions were presented twice (5 sequence 144 

lengths × 8 starting positions × 2 directions × 2 repetitions = 160 trials).  145 

3) Sequences with 16, 20, 24, 28, 32, 36, 40, or 44 consecutive presentations starting 146 

at each position and moving in both directions were presented once (8 sequence 147 

lengths × 8 starting positions × 2 directions = 128 trials).  148 

4) Sequences with 16, 20, 24, 28, 32, 36, 40, or 44 consecutive presentations starting 149 

at each position and moving in both directions followed by a reversal and 150 

continuation in the opposite direction for 8 to 16 (randomly determined) additional 151 

presentations were presented once (8 sequence lengths × 8 starting positions × 2 152 

directions = 128 trials).  153 

 154 

Because 32 target trials were appended to the trial list, each block encompassed 928 trials (in 155 

16 sets of 58 trials). Each set was initiated with a button press. Each participant completed two 156 

blocks per session, with a block lasting ∼30 min. In total, each participant completed 5,568 157 

trials. 158 

 159 

Under protocol 2, all types of trials were combined in a single block, randomly interleaved: 160 

1) Sequences with four, five, six, seven, or eight consecutive presentations starting at 161 

each position and moving in both directions were presented eight times (5 sequence 162 

lengths × 8 starting positions × 2 directions × 8 repetitions = 640 trials).  163 

2) Sequences with 9, 10, 11, 12, 13, 14, 15, or 16 consecutive presentations starting at 164 

each position and moving in both directions were presented four times (8 sequence 165 

lengths × 8 starting positions × 2 directions × 4 repetitions = 512 trials).  166 

3) Sequences with 9, 10, 11, 12, 13, 14, 15, or 16 consecutive presentations starting at 167 

each position and moving in both directions followed by a reversal and continuation 168 
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in the opposite direction for one to eight (randomly determined) additional 169 

presentations were presented four times (8 sequence lengths × 8 starting positions 170 

× 2 directions × 4 repetitions = 512 trials).  171 

 172 

In each block, a target was randomly presented in 50 trials, and these trials were discarded. 173 

Each block was split up into 13 sets, and each set was initiated with a button press. In a session, 174 

participants completed one block, taking ∼90 min. In total, each participants completed 3,328 175 

trials. 176 

 177 

EEG acquisition and preprocessing 178 

The 64-channel EEG data, and data from six EOG and two mastoid channels, were acquired 179 

using a BioSemi ActiveTwo EEG system sampling at 2,048 Hz. EEG data were re-referenced 180 

offline to the average of the two mastoid electrodes and resampled to 512 Hz. Eleven 181 

participants had one bad channel during one of the sessions. This channel was spherically 182 

interpolated using EEGlab (Delorme & Makeig, 2004). 183 

All data were epoched relative to stimulus onset. For the decoding analysis, we make a 184 

distinction between training and test epochs. Training epochs (-150 to +150ms) were used to 185 

train temporally-specific LDA classifiers. Under both protocols, the training epochs were time-186 

locked to the first presentation in a sequence. The initial stimulus was random and had no 187 

history, meaning its position could not be anticipated. The training data was initially epoched 188 

from -800 ms before stimulus onset to +800 ms after and baseline-corrected to the mean of the 189 

200-ms period before stimulus onset. Reduced epochs (-150 to +150ms) were then extracted 190 

and concatenated prior to time-frequency decomposition. 191 

Test epochs were extracted relative to the onset of four events of interest (‘Start’, 192 

‘Middle’, ‘Stop’, and ‘Reversal’). Initial epochs were again taken from -800 ms to +800 ms 193 

and were baseline-corrected to the mean of the 800-ms period before stimulus onset. This 194 

baseline period was chosen such that it was consistent across all epochs and contained a full 195 

cycle of motion on the majority of the epochs, in order to avoid introducing stimulus-specific 196 

differences as much as possible. Reduced epochs (-400 to +800ms) were then extracted and 197 

concatenated prior to time-frequency decomposition. Training and testing epochs in which the 198 

amplitudes across any of the 8 occipital electrodes exceeded 100 μV were rejected. Across all 199 

observers, 11.70% (SD = 6.98 %) of epochs were removed in this way.   200 
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Time-frequency decomposition and power-based decoding analysis 201 

To focus on EEG activity recorded over the visual cortex, our analyses were restricted to the 202 

eight occipital electrodes (PO7 PO3 O1 POz Oz O2 PO4 PO8). To construct the training set, 203 

we extracted epochs between -150 and +150 ms after the onset of the first stimulus in the 204 

apparent motion sequences. To construct the testing set, we extracted epochs between -400 and 205 

+800 ms relative to the four events of interest (‘Start’, ‘Middle’, ‘Stop’, and ‘Reversal’).  206 

We decoded from timepoint-specific normalized power estimates, to avoid potential 207 

issues with baselining (Hajonides et al., 2020). To extract these power estimates, time-208 

frequency decomposition was performed using custom MATLAB code. The EEG time series 209 

was convolved with a set of complex Morlet wavelets, defined as Gaussian-windowed complex 210 

sine waves: ei2πtfe−t2/(2*σ2), where t is time, f is frequency (which increased from 2 to 40 Hz in 211 

20 linearly spaced steps, although for consistency the third extracted frequency was set to 6.67 212 

Hz to align with the slowest stimulus presentation rate in Experiment 2), and σ defines the 213 

width of each frequency band, defined as n/2πf, with n logarithmically increasing from 3 to 10. 214 

From the resulting analytic signal (z) we obtained power estimates defined as p(t) = |z(t)|2. 215 

To investigate the spectral locus of stimulus-position information, we trained LDA 216 

classifiers at each training time point (+50 and +150 ms) to predict the position of the initial 217 

stimulus from frequency-specific normalized power estimates. Across testing timepoints (-400 218 

to +800ms) we then took individual trials, and computed the posterior probabilities associated 219 

with the stimulus being in each of the 8 possible positions. Averaging across testing trials this 220 

yielded 8 values indicating the probability the stimulus was in a given position, for a given 221 

training representation. To temporally-generalize this measure, we averaged the probabilities 222 

from each of the temporally-specific classifiers (+50 to +150 ms). This yielded a time-223 

generalized measure of the relative probability that a stimulus was in each of the possible 224 

locations, at a given testing timepoint (i.e., a probabilistic map). Temporal generalization was 225 

necessary to allow for the fact that the timing of sensory processing likely changes when stimuli 226 

are predictable (Blom et al., 2020). Finally, we re-ordered the resulting probability values to 227 

centre the location of the presented stimulus at t=0, flipping one motion direction condition to 228 

align the probability estimates. Averaging across stimulus positions and motion directions this 229 

yielded frequency-specific maps of the stimulus position over time. 230 

To examine the timecourses of position information encoding, and to test for evidence 231 

of temporal prediction, we extracted the position evidence timecourse for the location one step 232 

ahead of the position the stimulus occupied at t=0 (i.e. one position forwards along its original 233 

trajectory of motion). This allowed us to see whether future (expected) position representations 234 



 11 

were activated when the stimulus unexpectedly reversed direction or disappeared (i.e. in the 235 

absence of direct visual input). To assess the frequency specificity of stimulus-position 236 

information encoding, we convolved a cosine function with each frequency-specific spatial 237 

tuning function (i.e. probabilistic maps constructed from the power of individual frequencies). 238 

Averaging across time (+50 to +150 ms), this yielded a single estimate of the strength of the 239 

stimulus-position information encoded at each frequency. 240 

 241 

Statistical Analysis  242 

We adopted a non-parametric approach to analysing the position evidence timecourses 243 

(Figure 2B and 3B). Specifically, we estimated a one-sided bias-corrected and adjusted 244 

bootstrapped confidence interval around the mean (10000 bootstrapped samples, alpha levels 245 

of 0.05 and 0.01). Timepoints where this interval exceeded 0 were taken as being significantly 246 

different from chance.  247 

 248 

Experiment 2 249 

To control for the underlying rhythmicity of the stimulus we ran a second experiment in which 250 

the update-rate of the stimulus was varied across three frequencies: 100 ms (10 Hz), 125 ms (8 251 

Hz) and 150 ms (6.67 Hz). Unless otherwise stated the procedure employed in Experiment 2 252 

was identical to Experiment 1.  253 

 254 

Participants 255 

Thirty four observers (17 female, mean age 25 years) participated in Experiment 2. All 256 

observers had normal or corrected-to-normal vision. The experimental protocol was approved 257 

by the human research ethics committee of the University of Melbourne (Ethics ID 1954628), 258 

Australia. All observers gave written informed consent prior to participating and were 259 

reimbursed AUD15 per hour.  260 

 261 

Procedure 262 

Participants completed three separate blocks of apparent motion sequences in a random order. 263 

In each block the interstimulus interval (ISI) was varied  (Block Type 1: 33.33 ms ISI – 100 264 

ms update rate; Block Type 2: 58.33 ms ISI – 125 ms update rate; Block Type 3: 83.33 ms ISI 265 

– 150 ms update rate), while the stimulus presentation time (66.66 ms) was held constant. Each 266 

block consisted of sequences of 4-12 consecutive presentations starting at each position and 267 
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moving in both directions, presented 6 times (9 sequence lengths × 8 starting positions × 2 268 

directions × 6 repetitions = 864 trials).  269 

 270 

EEG acquisition and preprocessing 271 

All acquisition and screening procedures were identical to Experiment 1. Thirteen participants 272 

had one bad channel during one of the sessions. These channels were spherically interpolated 273 

using EEGlab (Delorme & Makeig, 2004). Across all participants, 14% (SD = 9.13%) of 274 

epochs were removed for exceeding the 100 uV limit. Identical time frequency decomposition, 275 

decoding, and statistical analysis methods to those used in Experiment 1 were used to analyse 276 

the data from Experiment 2.  277 

 278 

Data and Code Availability 279 

Code and data for recreating all analyses will be made available on the open science 280 

framework at the time of publication: https://osf.io/x8n9p/.  281 
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Results 282 

Figure 2B shows probabilistic stimulus-position maps derived from the power of occipital 283 

oscillations in the alpha/low-beta range (10-16 Hz), split by motion direction and event of 284 

interest (‘Start’, ‘Middle’, ‘Stop’, ‘Reversal’, Figure 2A).  285 

Figure 2. Tracking the position of moving stimuli from occipital alpha/low-beta power. A) 286 
Illustration of the four events of interest: ‘Start’: the initial stimulus in a motion sequence, ‘Middle’: 287 
presentation of a stimulus embedded within an ongoing sequence, ‘Stop’: presentation of the final 288 
stimulus in a motion sequence, and “Reversal”: presentation of final stimulus before a motion reversal. 289 
B) Probabilistic stimulus-position maps derived from the power of occipital oscillations in the 290 
alpha/low-beta range. Red indicates high probability regions and blue indicates low probability regions. 291 
Time is shown on the y-axis and spatial position on the x-axis. The solid black lines in each map indicate 292 
the position of the stimulus as it moves along its motion trajectory. Dotted lines (in the Stop and 293 
Reversal maps) indicate positions the stimulus would have occupied if it had kept moving as expected, 294 
rather than stopped or reversed. Maps are split by the motion direction of the stimulus (clockwise, 295 
counterclockwise) and the event of interest. In panels A and B, solid black arrows mark the position of 296 
the relevant event of interest.  297 

Figure 3A shows the same data, collapsed across motion direction. The probabilistic 298 

maps presented in Figures 2 and 3 reveal that occipital alpha/low-beta oscillations contain 299 

position information, with the high probability region (shown in red) consistently tracking the 300 

location of the stimulus, even when the stimulus unexpectedly reverses direction. This 301 
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demonstrates that it is possible to reconstruct the stimulus’ trajectory from the power of these 302 

oscillations alone.  303 

Figure 3. Experiment 1. A) Stimulus-position maps derived from the power of alpha/low-beta 304 
oscillations (10-16 Hz) over the occipital cortex. Red indicates high probability regions and blue 305 
indicates low probability regions. Time is shown on the y-axis and spatial position on the x-axis. The 306 
solid black lines in each map indicate the position of the stimulus as it moves along its motion trajectory. 307 
Dotted lines (in the Stop and Reversal maps) indicate positions the stimulus would have occupied if it 308 
had kept moving as expected, rather than stopped or reversed. B) Probability time-courses for the +1 309 
ahead position. Timepoints where the lower bound of single-sided bias-corrected and accelerated (BCa) 310 
bootstrapped 95% or 99% confidence intervals exceeded zero are marked with grey and black dots 311 
respectively. Solid vertical lines mark the onset of the stimulus at t=0. C) Frequency specificity of 312 
positional information. Position tuning is quantified as the average cosine-convolved evidence between 313 
+50 and +150 ms. Grey and blue lines show position evidence calculated on actual and scrambled 314 
position maps. The vertical grey lines mark the approximate boundaries of the canonical EEG frequency 315 
bands (theta: 4-8 Hz, alpha: 8-12Hz, low beta: 12-20 Hz, high beta: 20-30 Hz, gamma: 30-40 Hz).  316 

To examine whether position information was encoded in a temporally predictive 317 

fashion, we examined the evidence timecourse for the position one step ahead of the position 318 

the stimulus occupied at t=0 (i.e. one position forwards along its original trajectory of motion, 319 

Figure 3B). In line with our previous work using more conventional classification analysis 320 

applied to raw EEG amplitudes (Blom et al., 2020), these timecourses reveal that when the 321 
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stimulus stopped or reversed, there was anticipatory activation of the next expected position 322 

representation at the time of expected presentation.  323 

To assess the frequency specificity of stimulus-position information encoding, we 324 

convolved a cosine function with each frequency-specific spatial tuning function (i.e. 325 

probabilistic maps constructed from the power of individual frequencies) between +50 and 326 

+150 ms (Hajonides et al., 2021). Averaging across time, this yielded a single estimate of the 327 

strength of the stimulus-position information encoded at each frequency. Consistent with the 328 

theoretical work of Alamia and VanRullen (2019), this analysis revealed that stimulus-position 329 

information was strongly encoded in the alpha range (Figure 3C). Interestingly, peak encoding 330 

occurred at roughly the border of the canonical alpha and beta ranges (12 Hz), with clear 331 

information encoding extending into the low-beta range (~12-20 Hz). This potentially suggests 332 

that the relevant time-delay for visual processing is slightly shorter than Alamia & VanRullen 333 

(2019) originally assumed (see Discussion). We note that this entire pattern of results also holds 334 

after first subtracting the condition-specific ERPs from the data, suggesting non-phase-locked 335 

power effects, and not simply VEP amplitude differences, are driving decoding (results not 336 

shown, see online data).  337 

One interpretation of the results from Experiment 1 is that occipital alpha/low-beta 338 

oscillations are a spectral signature of ongoing recursive signaling between hierarchically-339 

organised regions of the visual system, with their power carrying (spatial) information about 340 

the underlying stimulus being processed. However, because the apparent motion stimulus in 341 

this experiment was updated every 100 ms (i.e. at 10 Hz), it is possible that stimulus-related 342 

information was entrained in the alpha range by the underlying rhythmicity of stimulus-evoked 343 

activity.  344 

To examine this possibility, we ran a second experiment in which we varied the 345 

stimulus update rate across three frequencies: 10 Hz (100 ms), 8 Hz (125 ms), and 6.67 Hz 346 

(150 ms). A new group of participants (N = 34) viewed an otherwise identical apparent motion 347 

stimulus moving along a circular path, while EEG was recorded. Figure 4A shows stimulus-348 

position maps derived from the power of occipital alpha oscillations in Experiment 2. Different 349 

rows illustrate different stimulus update rates (10 Hz, 8 Hz, or 6.67 Hz), for the Start (left 350 

column), Middle (middle column) and End of the sequence (right column). Note that there 351 

were no motion reversals in this experiment.  352 

The results of Experiment 2 replicated those of Experiment 1. The location of the 353 

stimulus could again be tracked from the power of occipital alpha/low-beta oscillations (10-16 354 
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Hz), across variations in stimulus update rate. Similarly, we again saw an increase in 355 

probability for the next expected position when the stimulus disappeared (Figure 4B).  356 

Figure 4. Experiment 2. A) Stimulus-position maps derived from the power of 10-16 Hz oscillations 357 
over the occipital cortex in Experiment 2. Plotting conventions are the same as in Figure 2, except the 358 
data has been split by stimulus update rate (rows) and trial type (columns). Each map shows data at the 359 
start (left column), middle (middle column) and end (right column) of a motion sequence. B) Probability 360 
time-courses for the +1 ahead position. Timepoints where the lower bound of single-sided bias-361 
corrected and accelerated (BCa) bootstrapped 95% or 99% confidence intervals exceeded zero are 362 
marked with grey and black dots respectively. C) Frequency specificity of position information and 363 
average peak frequency of position tuning, calculated from cosine-convolved evidence between 50-150 364 
ms. The vertical lines mark the stimulation frequency across the 6.67 Hz, 8 Hz, and 10 Hz conditions.  365 

Figure 4C shows that stimulus-position information was again strongly encoded in the 366 

alpha/low-beta range, across variations in stimulus update-rate. Even after extended exposure 367 

to driven input at lower frequencies (i.e. in the Middle and Stop epochs), there is minimal effect 368 

on information encoding within the alpha/beta range. However, at lower frequencies there is 369 

slightly more (albeit inconsistent) variability across update rates. For the 6.67 and 8 Hz 370 

conditions, there is qualitatively stronger information encoding, although this does not 371 

perfectly scale with the stimulation frequency (see Discussion).  372 
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Figure 5. Examining the timecourse and spectral locus of predictive position information 373 
(collapsing across both experiments). A) A frequency by time image of probability values 374 
for the +1 ahead position, collapsing across all Stop epochs. This reveals a transition from 375 
below-chance probabilities for the +1 ahead position (in black) to above-chance probabilities 376 
(in white), centred on the alpha/low-beta range. B) The timecourse of probability values when 377 
averaging within the alpha/low-beta range (10-16 Hz). C) Frequency specificity of predictive 378 
position information (averaged between 100 – 400 ms). In panels B and C, timepoints where 379 
the lower bound of single-sided bias-corrected and accelerated (BCa) bootstrapped 95% or 380 
99% confidence intervals exceeded zero are marked with grey and black dots. 381 

Finally, to examine the timecourse and spectral locus of predictive position information 382 

in greater detail, we collapsed the data from all Stop epochs across both experiments. Focussing 383 

on the +1 ahead position (i.e. the boxed region in Figure 3A), we calculated the median 384 

probability timecourse across participants for all stop conditions (Experiment 1 has one 385 

condition, Experiment 2 has 3 conditions for the three speeds, respectively). Averaging across 386 

these yields a frequency by time image of probability values. Examining this, we can see that 387 

up until the presentation of the last stimulus (at 0 ms) there is a clear suppression of positional 388 

probability for the +1 ahead position, occurring in the alpha/low-beta range. This is 389 

unsurprising given the fact that the stimulus is presented in other locations during this time 390 

period. Around the expected time of stimulus presentation, however, we see evidence of a 391 

switch to above chance decoding, even though no stimulus is actually presented. Figure 5B 392 

shows the timecourse of this effect within the alpha/low-beta range (10-16 Hz). Importantly, 393 

Figure 5C shows that this predictive effect is specific to the alpha/low-beta frequency range.   394 
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Discussion 395 

Across two experiments we investigated whether stimulus-related (spatial) information is 396 

encoded in the power (squared amplitude) of neural oscillations over the occipital cortex. We 397 

also examined whether information is encoded in a temporally predictive fashion, as is required 398 

for predictive coding networks to effectively minimise prediction error under neural delays 399 

(Hogendoorn & Burkitt, 2019).  400 

In Experiment 1, we demonstrated that the location of a moving stimulus could be 401 

decoded from the power of occipital oscillations in the alpha/low-beta frequency range (with 402 

peak encoding at ~12 Hz). Strikingly, we found it was possible to track the position of the 403 

moving stimulus and reconstruct its trajectory from the power of these rhythms alone. We also 404 

observed anticipatory activation of the expected but unstimulated stimulus position following 405 

the end of a motion sequence. This demonstrates that the previously-reported pre-activation 406 

revealed by analysis of raw EEG amplitudes (Blom et al., 2020) is likely encoded in alpha/low-407 

beta band activity. In Experiment 2, by varying the update-rate of the stimulus we demonstrated 408 

that the encoding of information in this frequency range is not driven by visual entrainment.  409 

This study contributes to an emerging line of research examining potential links 410 

between the in silico oscillatory dynamics of hierarchical predictive coding networks and 411 

rhythmic activity patterns in human EEG recordings (Alamia et al., 2020; Alamia & 412 

VanRullen, 2019). To our knowledge, this study is the first to demonstrate that the power of 413 

occipital oscillations in the alpha/low-beta range carries predictive stimulus-related 414 

information. This finding is broadly consistent with the theoretical predictions of Alamia and 415 

VanRullen (2019). Interestingly, we found that peak information occurred at the border of the 416 

canonical alpha/low-beta frequency ranges (12 Hz in Experiment 1). This potentially suggests 417 

that the relevant inter-regional delay for visual processing may be shorter than originally 418 

assumed (i.e., < 12 ms), leading to a higher frequency macroscopic spectral signature (Alamia 419 

& VanRullen, 2019). From the results of Experiment 2, there was some evidence that, 420 

qualitatively speaking, the strength of information encoding at lower frequencies depended on 421 

the stimulus-update rate. One interpretation of this overall pattern of results is that there is both 422 

a stimulus-independent oscillatory signature in the alpha/low-beta range, which emerges due 423 

to the inherently rhythmic dynamics of hierarchical predictive coding under signaling delays 424 

(Alamia & VanRullen, 2019; Hogendoorn & Burkitt, 2019), and an additional stimulus-425 

dependent component, which emerges when the stimulation frequency sufficiently deviates 426 

from this range. Ultimately however, further studies in which the stimulus update rate is varied 427 

across a wider range are needed to fully address this possibility.  428 
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To briefly account for the observed effects, we think that stimulus onset may have 429 

generated waves of activity originating from retinotopically-specific locations in visual cortex. 430 

Indeed, previous theoretical and empirical work has established the existence of such waves, 431 

and has shown that they manifest as oscillations in the alpha frequency range (Alamia et al., 432 

2020; Alamia & VanRullen, 2019; Lozano-Soldevilla & VanRullen, 2019). Crucially, given 433 

their spatially-specific nature, these waves of activity will have been registered on the 434 

electrode-level as relative power differences. By examining normalized oscillatory power 435 

across electrodes, it was therefore possible to determine the on-screen position of the stimulus.  436 

While stimulus-position information was encoded most strongly in the alpha/low-beta 437 

range, it should not be concluded that spatial information is exclusively encoded at this 438 

(relatively slow) temporal scale. Indeed, it is likely that spatial information is also processed 439 

on a more fine-grained timescale. In the present study, we may not have been able to observe 440 

this due to the relatively poor resolution of scalp-based EEG recordings for high frequency 441 

oscillations. Overall, the fact that stimulus-position information was predominantly encoded in 442 

the alpha/low-beta range, aligns with the view that oscillations in this general frequency range 443 

may be a macroscopic signature of predictive message passing between hierarchically 444 

organised regions of the visual system (Alamia & VanRullen, 2019). While such signalling 445 

almost certainly operates over many temporal and spatial scales, neural delays potentially cause 446 

these oscillations to be the most prominent macroscopic rhythmic ‘fingerprint’ of network 447 

activity.  448 

In further support of this view, the probabilistic spatial maps we constructed displayed 449 

temporally predictive activation patterns. Specifically, when the stimulus disappeared or 450 

unexpectedly reversed its direction, we observed an increase in the probability the stimulus 451 

was occupying the next position along its original trajectory of motion, at the expected time of 452 

presentation. One could argue that these anticipatory activation patterns may be due to spatial 453 

smearing or variability in decoding, however we have observed similar dynamics in our 454 

previous work using more conventional classification analysis applied to raw EEG amplitudes 455 

(Blom et al., 2020). Moreover, similar anticipatory patterns have also been directly observed 456 

in numerous animal neurophysiology studies (Benvenuti et al., 2020; Berry et al., 1999; 457 

Chemla et al., 2019; Jancke et al., 2004; Liu et al., 2021; Trenholm et al., 2013) as well as in 458 

more recent human fMRI experiments (Ekman et al., 2017, 2022). The novelty of our current 459 

work therefore lies in the demonstration that these anticipatory spatial representations manifest 460 

in alpha/low-beta oscillations, consistent with recent computational predictions (Alamia & 461 

VanRullen, 2019).  462 
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Considering potential neural mechanisms underlying these dynamics, there are two 463 

main possibilities. First, it is possible that anticipatory activation is facilitated by an omni-464 

directional spreading of activity between retinotopically organised neural populations. This 465 

could be facilitated by within-region lateral connectivity (Benvenuti et al., 2020; Liu et al., 466 

2021) or between-region divergent connectivity (Baldo & Caticha, 2005). A second possibility, 467 

is that more complex sequence learning mechanisms are involved. For example, it has recently 468 

been shown that after repeated exposure to visual sequences, activity in the visual cortex 469 

associated with these sequences can be predictively activated (‘pre-played’) by the presentation 470 

of just a single stimulus (Ekman et al., 2017, 2022). It is possible that in our experiments, 471 

similar predictive associations between neighboring stimulus position were generated, leading 472 

to anticipatory activation (although why pre-play of an ongoing sequence did not occur would 473 

need to be accounted for). To arbitrate between these possibilities future studies could examine 474 

the dynamics that arise when participants are exposed to arbitrary, non-contiguous sequences 475 

of flashes (as in Ekman et al., 2022), using the decoding approach developed in the current 476 

study.  477 

While considering the question of temporal prediction, one point which should be made 478 

is that despite showing temporally predictive qualities (activation of likely future positions in 479 

the absence of direct input), the bulk of activity in the spatial probability maps still lagged 480 

behind the stimulus (although activity onset did align with stimulus onset). This raises the 481 

question of whether there was sufficient temporal prediction to fully compensate for neural 482 

signaling delays (Hogendoorn & Burkitt, 2019). Ultimately, given the temporal smearing 483 

inherent to time-frequency based analyses, it is beyond the scope of this paper to fully address 484 

that question. This may be better tackled using alternative methods in which more fine-grained 485 

temporal resolution can be achieved (see Blom et al., 2020; Johnson et al., 2023).  486 

In appraising the current findings, it is important to consider two potential non-487 

stimulus-driven sources of information that may have influenced our decoding analyses: 1) eye 488 

movements, and 2) spatial attention differences. Eye movements are an insidious potential 489 

artifact in neuroimaging experiments, that must be considered when employing classification 490 

analyses (Quax et al., 2019). However, three factors greatly limit the possibility that eye 491 

movements confounded the current analyses. Firstly, in earlier analyses of the data from 492 

Experiment 1 (Blom et al., 2020), we demonstrated in a control sample of participants that the 493 

position of the stimulus could not be decoded from eye-movement traces. Secondly, the current 494 

analyses were restricted to only occipital electrodes. Since eye-movement-related muscle 495 

activity manifests predominantly at frontal electrodes, the likelihood that we are picking up on 496 
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eye movements is further reduced. Finally, training epochs were limited to the first 150 ms 497 

after the (unpredictable) onset of a motion sequence. Since saccade onsets and corresponding 498 

eye-movement-related biases in decoding performance typically occur >200 ms after stimulus 499 

onset (Quax et al., 2019), this further reduces the likelihood of eye-movement confounds. By 500 

restricting our analyses to an early time window, and only analysing activity recorded directly 501 

over the visual cortex, it is more likely that the current analyses are tapping into the initial feed-502 

forwards sweep of visual information processing, rather than eye-movement-related 503 

information.  504 

 It is also important to consider whether our decoding analyses were confounded by 505 

position-related differences in spatial attention. This is because it has been demonstrated that 506 

position-specific differences in covert spatial attention can be decoded from the power of alpha 507 

oscillations (Foster et al., 2017). However, the theoretical work of Alamia and VanRullen 508 

(2019) potentially prompts a subtle but significant re-interpretation of this earlier finding. 509 

While Foster et al. (2017) clearly showed that shifts in attention co-occur with changes in alpha 510 

power, this does not mean that alpha oscillations necessarily directly reflect the deployment of 511 

spatial attention. Rather, top-down shifts in attention (occurring at ~300 ms in Foster et al., 512 

2017) likely alter neural activity patterns in the visual system. Under Alamia and VanRullen’s 513 

account (2019), this would, in turn, change the pattern/amplitude of occipital alpha oscillations. 514 

In that sense, alpha oscillations would reflect the knock-on effect that spatial attention 515 

differences have on macroscopic network dynamics, rather than the deployment of spatial 516 

attention directly. Considering the present results, the fact that our training epochs were 517 

restricted to 50-150 ms after initial stimulus onset, again makes it more likely that we are 518 

tapping into the first sweep of visual information processing rather than spatial-attention 519 

differences, which one might expect to manifest over a slower timescale.  520 

In conclusion, consistent with recent in silico simulations (Alamia & VanRullen, 2019) 521 

we have shown that occipital alpha/low-beta oscillations carry predictive stimulus-related 522 

information. By examining the power of these rhythms, we could reconstruct the trajectory of 523 

a moving stimulus, tracking its position even across unexpected motion reversals. Moreover, 524 

we found that future position representations were anticipatorily activated in the absence of 525 

direct visual input, indicative of temporally predictive processing. Collectively, these results 526 

support the view of alpha/low-beta oscillations as a potential spectral ‘fingerprint’ of 527 

hierarchical predictive processing in the human visual system.   528 



 22 

References 529 

Alamia, A., Timmermann, C., Nutt, D. J., VanRullen, R., & Carhart-Harris, R. L. (2020). 530 

DMT alters cortical travelling waves. ELife, 9, e59784. 531 

https://doi.org/10.7554/eLife.59784 532 

Alamia, A., & VanRullen, R. (2019). Alpha oscillations and traveling waves: Signatures of 533 

predictive coding? PLOS Biology, 17(10), e3000487. 534 

https://doi.org/10.1371/journal.pbio.3000487 535 

Baldo, M. V. C., & Caticha, N. (2005). Computational neurobiology of the flash-lag effect. 536 

Vision Research, 45(20), 2620–2630. https://doi.org/10.1016/j.visres.2005.04.014 537 

Benvenuti, G., Chemla, S., Boonman, A., Perrinet, L., Masson, G. S., & Chavane, F. (2020). 538 

Anticipatory responses along motion trajectories in awake monkey area V1. BioRxiv, 539 

1–42. 540 

Berens, P. (2009). CircStat: A MATLAB Toolbox for Circular Statistics. Journal of 541 

Statistical Software, 31. https://www.jstatsoft.org/article/view/v031i10 542 

Berry, M. J., Brivanlou, I. H., Jordan, T. A., & Meister, M. (1999). Anticipation of moving 543 

stimuli by the retina. Nature, 398(March). 544 

Blom, T., Bode, S., & Hogendoorn, H. (2021). The time-course of prediction formation and 545 

revision in human visual motion processing. Cortex, 138, 191–202. 546 

https://doi.org/10.1016/j.cortex.2021.02.008 547 

Blom, T., Feuerriegel, D., Johnson, P., Bode, S., & Hogendoorn, H. (2020). Predictions drive 548 

neural representations of visual events ahead of incoming sensory information. 549 

Proceedings of the National Academy of Sciences, 117(13), 7510–7515. 550 

https://doi.org/10.1073/pnas.1917777117 551 

Chemla, S., Reynaud, A., Volo, M. di, Zerlaut, Y., Perrinet, L., Destexhe, A., & Chavane, F. 552 

(2019). Suppressive Traveling Waves Shape Representations of Illusory Motion in 553 

Primary Visual Cortex of Awake Primate. Journal of Neuroscience, 39(22), 4282–554 

4298. https://doi.org/10.1523/JNEUROSCI.2792-18.2019 555 

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-556 

trial EEG dynamics including independent component analysis. Journal of 557 

Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 558 

Ekman, M., Kok, P., & de Lange, F. P. (2017). Time-compressed preplay of anticipated 559 

events in human primary visual cortex. Nature Communications, 8(1), Article 1. 560 

https://doi.org/10.1038/ncomms15276 561 



 23 

Ekman, M., Kusch, S., & de Lange, F. P. (2022). Successor-like representation guides the 562 

prediction of future events in human visual cortex and hippocampus [Preprint]. 563 

Neuroscience. https://doi.org/10.1101/2022.03.23.485480 564 

Foster, J. J., Sutterer, D. W., Serences, J. T., Vogel, E. K., & Awh, E. (2017). Alpha-Band 565 

Oscillations Enable Spatially and Temporally Resolved Tracking of Covert Spatial 566 

Attention. Psychological Science, 28(7), 929–941. 567 

https://doi.org/10.1177/0956797617699167 568 

Friston, K. (2008). Hierarchical Models in the Brain. PLoS Computational Biology, 4(11), 569 

e1000211. https://doi.org/10.1371/journal.pcbi.1000211 570 

Hajonides, J. E., Nobre, A. C., van Ede, F., & Stokes, M. G. (2021). Decoding visual colour 571 

from scalp electroencephalography measurements. NeuroImage, 237, 118030. 572 

https://doi.org/10.1016/j.neuroimage.2021.118030 573 

Hogendoorn, H., & Burkitt, A. N. (2019). Predictive Coding with Neural Transmission 574 

Delays: A Real-Time Temporal Alignment Hypothesis. ENeuro, 6, 1–12. 575 

Jancke, D., Erlhagen, W., Schöner, G., & Dinse, H. R. (2004). Shorter latencies for motion 576 

trajectories than for flashes in population responses of cat primary visual cortex. The 577 

Journal of Physiology, 556(3), 971–982. 578 

https://doi.org/10.1113/jphysiol.2003.058941 579 

Johnson, P. A., Blom, T., & van Gaal, S. (2023). Position representations of moving objects 580 

align with real-time position in the early visual response. ELife. 581 

Kok, P., Failing, M. F., & de Lange, F. P. (2014). Prior expectations evoke stimulus 582 

templates in the primary visual cortex. Journal of Cognitive Neuroscience, 26(7), 583 

1546–1554. 584 

Kok, P., Mostert, P., & Lange, F. P. D. (2017). Prior expectations induce prestimulus sensory 585 

templates. Proceedings of the National Academy of Sciences, 114(39). 586 

https://doi.org/10.1073/pnas.1705652114 587 

Liu, B., Hong, A., Rieke, F., & Manookin, M. B. (2021). Predictive encoding of motion 588 

begins in the primate retina. Nature Neuroscience, 24, 1280–1290. 589 

https://doi.org/10.1038/s41593-021-00899-1 590 

Lozano-Soldevilla, D., & VanRullen, R. (2019). The Hidden Spatial Dimension of Alpha: 591 

10-Hz Perceptual Echoes Propagate as Periodic Traveling Waves in the Human Brain. 592 

Cell Reports, 26(2), 374-380.e4. https://doi.org/10.1016/j.celrep.2018.12.058 593 



 24 

Luo, H., & Poeppel, D. (2007). Phase Patterns of Neuronal Responses Reliably Discriminate 594 

Speech in Human Auditory Cortex. Neuron, 54(6), 1001–1010. 595 

https://doi.org/10.1016/j.neuron.2007.06.004 596 

Quax, S. C., Dijkstra, N., van Staveren, M. J., Bosch, S. E., & van Gerven, M. A. J. (2019). 597 

Eye movements explain decodability during perception and cued attention in MEG. 598 

NeuroImage, 195, 444–453. https://doi.org/10.1016/j.neuroimage.2019.03.069 599 

Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional 600 

interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 601 

2(1), 79–87. 602 

Ronconi, L., Oosterhof, N. N., Bonmassar, C., & Melcher, D. (2017). Multiple oscillatory 603 

rhythms determine the temporal organization of perception. Proceedings of the 604 

National Academy of Sciences, 114(51), 13435–13440. 605 

https://doi.org/10.1073/pnas.1714522114 606 

Trenholm, S., Schwab, D. J., Balasubramanian, V., & Awatramani, G. B. (2013). Lag 607 

normalization in an electrically coupled neural network. Nature Neuroscience, 16(2). 608 

https://doi.org/10.1038/nn.3308 609 

 610 

Author Contributions 611 

W.T., T.B., and H.H. contributed to conception and design. T.B. programmed both experiments 612 

and oversaw data collection. W.T. analysed the data and drafted the article. All authors 613 

reviewed and revised the manuscript. H.H. funded and supervised the project.  614 


