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Abstract  

Because neural processing takes time, the brain only has delayed access to sensory information. 

When localising moving objects this is problematic, as an object will have moved on by the 

time its position has been determined. Here, we consider predictive motion extrapolation as a 

fundamental delay-compensation strategy. From a population-coding perspective, we outline 

how extrapolation can be achieved by a forwards shift in the population-level activity 

distribution. We identify general mechanisms underlying such shifts, involving various 

asymmetries which facilitate the targeted ‘enhancement’ and/or ‘dampening’ of population-

level activity. We classify these on the basis of their potential implementation (intra- vs inter-

regional processes) and consider specific examples in different visual regions. We consider 

how motion extrapolation can be achieved during inter-regional signaling, and how asymmetric 

connectivity patterns which support extrapolation can emerge spontaneously from local 

synaptic learning rules. Finally, we consider how more abstract ‘model-based’ predictive 

strategies might be implemented. Overall, we present an integrative framework for 

understanding how the brain determines the real-time position of moving objects, despite 

neural delays.  

 

Keywords:  

Predictive processing; motion extrapolation; visual processing; neural delays 

  



3 
 

1. Introduction  

Light falling on the photoreceptors in our eyes triggers waves of chemical and electrical activity 

in the nervous system. These carry information across the broad network of brain regions that 

makes up our ‘visual system’ to be processed and made sense of. Given the neural paths that 

must be travelled and the sense-making computations that are performed, the delay between 

light first arriving at the retina and the brain forming high-level perceptual representations 

spans many tens to hundreds of milliseconds. This raises a puzzling question: if visual 

processing inevitably incurs delays, how are we able to localize and accurately interact with 

moving objects? 

Consider a professional tennis player facing a ball travelling at 180 km/h. Assuming it 

takes them 80 milliseconds to process positional information, in this time the ball will already 

have moved a further 4 metres. So how, then, are they able to hit it? Or, in more evolutionarily-

relevant terms, how are hunters able to take down speeding prey? In both these scenarios, by 

the time the location of the moving object has been determined, it will no longer be there. The 

fact that such behaviours are nevertheless possible indicates that the brain must have developed 

ways of compensating for its own processing delays when localizing objects.  

This review considers predictive motion extrapolation as a fundamental delay-

compensation strategy employed by the brain. Broadly put, this involves using information 

about an object’s past trajectory to infer its probable present position. In the past two and a half 

decades, the existence of motion extrapolation mechanisms in the visual system, and their 

potential perceptual consequences, has been strongly debated (Hogendoorn, 2020; Nijhawan, 

1994, 2008; Nijhawan & Wu, 2009). Here, we argue that there is now clear evidence of a 

variety of neural mechanisms in the visual system that serve to extrapolate the represented 

position of moving objects. Drawing together past research, and highlighting important recent 
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advances, we will present an integrative framework for understanding how these mechanisms 

allow the brain to encode objects, not where they were, but where they (probably) now are. 

 

2. Scope of the present review  

This review focusses on neural motion extrapolation mechanisms in the visual system. While 

related predictive mechanisms have been shown to exist outside the visual system (e.g., in the 

hippocampus & motor regions) these will not be covered in the present article (but see 

Stachenfeld et al., 2017; Wolpert, 1997; Wolpert & Flanagan, 2001). The perceptual 

consequences of the reviewed mechanisms will also not be considered in detail (but see 

Hogendoorn, 2020; Nijhawan, 2008). The consciously perceived location of an object depends 

on numerous underlying factors, and multiple (differing) position representations for a single 

object can coexist in the brain (see Goodale & Milner, 1992; Lisi & Cavanagh, 2015; Liu et 

al., 2019). We therefore restrict our focus to neural mechanisms that predictively modulate 

object-position representations (be they conscious or unconscious), without laying claim to 

how these mechanisms ultimately affect perceptual experience. To begin, we will briefly 

review the magnitude and cause of processing delays in the visual system, which necessitate 

the existence of compensatory extrapolation mechanisms.  

 

3. A brief review of visual delays: their magnitude and cause 

It takes time for the brain to process visual information. But how long exactly does this take, 

and why do delays exist in the first place?  

Photons of light entering the eye first activate photoreceptors at the innermost layer of 

the retina. These photoreceptors, grouped into rods and cones, convert light into chemical 

energy through the process of phototransduction. This energy is then transmitted to retinal 

ganglion cells (RGCs) via bipolar cells, which synapse with photoreceptors. Modulatory 
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activity along this pathway is provided by horizontal cells, which form lateral connections 

across photoreceptors, and amacrine cells, which form lateral connections across bipolar cells 

and RGCs. Besides RGCs, all activity in the retina is transmitted in the form of graded 

potentials; only when this energy reaches RGCs are action potentials produced and transmitted 

to the brain via the optic nerve.  

RGCs produce spikes at latencies of ~20 to 70 ms after the onset of a visual stimulus 

(salamanders and rabbits – Berry et al., 1999; cats – Bolz et al., 1982; goldfish – Johnston & 

Lagnado, 2015). As information passes from RGCs to the brain, and to the many different 

regions of the visual system, this initial delay is further compounded by transmission and 

integration delays. Transmission delays are relatively small and arise due to the time it takes 

for electrical signals to travel along the axon and across synapses. For instance, there can be as 

little as a ~1-2 ms transmission delay between the optic chiasm and the lateral geniculate 

nucleus (LGN; rhesus monkey – Schiller & Malpeli, 1978), and synaptic transmission similarly 

can be as fast as ~1-2 ms. However, neurons typically integrate multiple synaptic inputs before 

producing a response, such that integration delays are usually much more substantial. Spatial 

and temporal integration help to differentiate meaningful signals from background noise, at the 

cost of an ‘activation delay’ (Baldo & Caticha, 2005) as neurons typically only reach firing 

threshold after integrating many inputs. For this reason, the time it takes for a given signal to 

travel through the visual system depends on the intensity of the input, the level of preceding 

neural activity, and the degree of integration in the cortical route being travelled. 
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Figure 1. Neural delays across the visual hierarchy. A) Cumulative distributions of onset response 

latencies for cells in different regions of the macaque visual system — from Schmolesky et al. (1998) 

– Journal of Neurophysiology. B) Model diagram of the macaque visual system — from Felleman & 

Van Essen (1991) – Cerebral Cortex.  

 

Figure 1A shows cumulative distributions of onset response latencies for neurons in 

select regions of the macaque visual system (Schmolesky et al., 1998). These data show that 

areas further along the visual hierarchy tend to have longer average response latencies, 

consistent with a compounding of delays. What is also apparent, however, is the high degree 

of variability both within and between regions. A number of cells in early regions, such as the 

LGN and V1, begin firing within just 20-40 ms, but many others, in both early and late regions, 

take between 50-100+ ms to begin responding. Similar variability has been observed in 

recordings from humans, with V1 latency estimates ranging from 26-100 ms (Inui & Kakigi, 

2006). Considering the complex informational flow underlying visual processing (Figure 1B), 

it is apparent that there is no single fixed delay that must be compensated. Rather, variable 

delays accrue along each step of the way.  



7 
 

In and of themselves, delays are not always simply a nuisance. For example, in the (cat) 

LGN, distinct ‘lagged’ and non-lagged responses have been observed, suggesting that certain 

sub-populations of cells only becomes active after a fixed delay (note, this is irrespective of 

the upstream propagation delay; Dong & Atick, 1995; Saul & Humphrey, 1990). Crucially, 

delayed cells are thought to play a role in the temporal decorrelation of visual input (Dong & 

Atick, 1995), reminiscent of the spatial-decorrelation occurring in the retina (Atick & Redlich, 

1992). More generally, many theoretical accounts of neural motion detection (e.g., Reichardt-

type models, Hassenstein & Reichardt, 1956) explicitly employ transmission delays to enable 

forms of ‘coincidence detection’, registering motion in a given direction/velocity (see also 

Grimaldi & Perrinet, 2023; but see Heitmann & Ermentrout, 2020). Finally, more broadly 

again, delays (in combination with spike timing dependent plasticity) have been shown to play 

a crucial role in boosting the memory capacity of spiking neural networks (Izhikevich, 2006). 

However, as we outlined above, delays are problematic for time-sensitive interactions with 

dynamic environments, necessitating the existence of compensatory mechanisms, ideally on 

the local level. 

Below, we consider specific examples of neural mechanisms, in different regions of the 

visual system, that compensate for delays by extrapolating the represented position of moving 

objects. To provide an integrative framework within which to understand these mechanisms, 

we will begin by teasing out a common thread running through them. 

 

4. A general account of neural motion extrapolation 

The visual system can be thought of as a network of interconnected neural populations 

set within distinct regions or ‘layers’ (retina, LGN, V1, etc.). Many of these layers are 

retinotopically organised, meaning that the retinal topology is broadly conserved. This is 

important as it means that smoothly moving stimuli sequentially activate neighboring cells, 
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and it allows for local modulatory processes to shape evoked activity. To extrapolate the 

position of a moving object within this network, really only one thing is required: at some point 

the encoded position of the object must shift from the originally stimulated retinotopic location 

to the probable present location of the stimulus, given its motion history and the intervening 

delay (Figure 2A). But how, in practice, can this be achieved? 

Figure 2. A general account of neural motion extrapolation. Motion extrapolation can be achieved 

by shifting the population-level distribution of evoked activity forwards along the stimulus’ current 

motion trajectory. A) A moving stimulus (grey ball) generates a distribution of activity in layer N of 

the network. In the time it takes for this activity to be transmitted and registered in the next layer (N + 

1), the ball continues moving. With no extrapolation, the distribution of activity evoked in layer N + 1 

is not shifted to account for the intervening movement of the ball. With extrapolation, the distribution 

of activity shifts to account for this motion, encoding the current position of the ball despite the 

intervening delay. B) Neural extrapolation mechanisms can be classified on the basis of their 

modulatory effect(s). That is, whether they play a role in: ‘enhancing’ (orange) and/or ‘dampening’ 
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(blue) the leading/trailing edge of the evoked activity distribution. C) Mechanisms can also be classified 

according to whether they can be implemented via intra-regional (recurrent; green) and/or inter-regional 

(feedforward/feedback; purple) architectures. D) Illustrations of general neural mechanisms which 

support motion extrapolation. i) Spreading activation within a given region serves to enhance activity 

at the leading edge of the population-level distribution. ii) Spatially asymmetric inhibition (via intra- or 

inter-regional processes) serves to ‘erase’ the trailing edge of evoked activity. iii) Delayed inhibitory 

signals (within or between regions) can similarly erase the trailing edge of evoked activity. An 

enhancement of the leading edge also occurs due to an ‘escape’ from inhibition (relative to zero-lag 

inhibition; see Figure 5). iv) Divergent inter-regional connectivity facilitates responses at the leading 

edge of the activity distribution. v) Short-term synaptic depression (and related adaptation mechanisms, 

see Feuerriegel, 2023) dampens the trailing edge of evoked activity. vi) Asymmetric connectivity (either 

within or between regions) serves to ‘diagonally transfer’ activity (Nijhawan & Wu, 2009), 

simultaneously enhancing and dampening activity at the leading and trailing edges respectively. 

 

Suppose that, in each retinotopically organised region of the visual system, the position 

of a moving object is encoded via some form of population code (Pouget et al., 2000). For 

example, individual neurons may code for specific regions of visual space, with the ‘population 

position estimate’ given by the average of the positions coded for by all active neurons, 

weighted by their activity strength (e.g., Erlhagen et al., 1999; Georgopoulos et al., 1986; see 

Section 6.2 for further discussion). From this viewpoint, a common thread can be found 

running through the neural mechanisms that we will review. They all involve an underlying 

asymmetry which shifts the population position estimate in the direction of stimulus motion. 

These mechanisms can be classified according to 1) the modulatory effect(s) they have on 

population-level activity – in particular, whether they play a role in enhancing activity at the 

leading edge of the population-level activity distribution, and/or dampening activity at the 

trailing edge (Figure 2B). These mechanisms can be further classified 2) on the basis of their 
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potential implementation (Figure 2C) – specifically, whether they can operate intra-regionally 

(recurrent processes) or inter-regionally (feedforward/feedback processes). The various 

mechanisms we will review (Figure 2D) all ultimately serve to shift the weight of evoked 

activity forwards along the trajectory of motion, extrapolating the population position estimate.  

 In the following sections, we will work our way along the visual stream, and consider 

specific examples of such mechanisms, at the neural circuit level. Beginning in the retina, we 

will consider how ‘enhancing’ and ‘dampening’ mechanisms predictively shift the encoded 

position of moving objects along their trajectory of motion. We will then consider related 

mechanisms in the brain. Next, we will consider how motion extrapolation can be achieved 

during inter-regional information transfer along feedback and feedforward pathways. We will 

highlight how the asymmetric connectivity patterns which best enable motion extrapolation 

can spontaneously emerge from local synaptic learning rules. Finally, we will broaden our 

focus and briefly consider how more abstract ‘model-based’ extrapolation strategies (e.g., 

recursive Bayesian estimation) might be neurally implemented. 

 

5. Motion extrapolation in the retina 

The first stage at which neural motion extrapolation can occur is the point at which the visual 

world is transformed into chemical and electrical energy: the retina. In this section, we consider 

how ‘enhancing’ and ‘dampening’ mechanisms within the retina facilitate motion extrapolation 

during initial visual processing. Drawing upon recent work, we will also consider the question 

of exactly where in the visual system motion extrapolation first begins. 

 

5.1. Evidence of retinal extrapolation 

Early work on retinal motion extrapolation compared the activity evoked by moving 

and static stimuli in (non-direction selective) retinal ganglion cells (RGCs) of salamander and 
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rabbit (Berry et al., 1999). Strikingly, the population-level activity evoked by moving stimuli 

was found to be shifted in the direction of motion, compared to activity evoked by static stimuli. 

When presented with a static stimulus, RGCs fired after an average delay of ~50ms. However, 

when exposed to a moving stimulus, these same cells began firing ~400 ms before the stimulus 

reached their receptive field centre – a phenomenon termed ‘motion anticipation’. This led the 

peak of the population-level activity distribution to be roughly aligned with the leading edge 

of the stimulus, suggesting that rather than encoding the originally stimulated retinotopic 

location, RGCs were encoding the real-time position of the stimulus. 

This seminal observation – that RGCs can anticipate the arrival of a moving stimulus – 

has been replicated several times, for a range of RGC subtypes and species (goldfish – Johnston 

& Lagnado, 2015;  macaque – Liu et al., 2021; salamander and mouse – Schwartz et al., 2007; 

mouse – Trenholm et al., 2013). Most recently, it has been shown that both RGCs and upstream 

bipolar cells predictively encode a variety of different forms of motion (two and three point 

spatio-temporal correlations; Liu et al., 2021). The fact that bipolar cell activity predictively 

encodes motion information is particularly striking as it indicates that prediction must begin 

before or at the second synapse of the visual system.  

But what are the specific neural mechanisms which enable this? Below, we will outline 

how the lateral spreading of activity between cells can prime responses ahead of a moving 

stimulus, driving anticipatory responding via an enhancement of the leading edge of evoked 

activity. We will then consider how inhibitory mechanisms refine these predictions by 

dampening the trailing edge of the population response.  

  

5.2. Enhancing mechanisms: spreading activation  

In many regions of the visual system, neighbouring cells are electrically ‘coupled’, 

meaning they share activity with one another laterally (Figure 3B). In the retina, the spreading 
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of activity between coupled cells has been shown to drive motion anticipation (Trenholm et al. 

2013; Liu et al., 2021). On theoretical grounds, Liu et al. (2021) showed how coupling between 

bipolar cells, combined with a non-linear output function, could facilitate the encoding and 

transmission of predictive motion information. During visual motion, spatiotemporal 

correlations lead to the sequential stimulation of neighbouring bipolar cells. For cells that are 

electrically coupled, some current will spread out from an active cell to its neighbours. This 

causes a priming effect, leading to faster and greater depolarization in neighbouring cells that 

receive subsequent feed-forward excitation. Combined with an output thresholding 

mechanism, the overall effect is that coupled cells encode spatiotemporally correlated signals, 

while minimizing the encoding of uncorrelated inputs that fall below the output threshold.  

Interestingly, photoreceptors have long been known to display direct electrical 

coupling, sometimes with as many as 200 other cells (Baylor et al., 1971; Copenhagen & Owen, 

1976; DeVries et al., 2002). The basic building blocks for motion extrapolation are therefore 

present at the very start of the visual cascade. To our knowledge, however, the potential for 

anticipatory responding in photoreceptors has not been directly investigated. Bipolar cell 

outputs are therefore the earliest point at which predictive motion signaling has been observed 

(Liu et al. 2021). 

While laterally spreading activity may be symmetric (i.e. a cell primes its neighbours 

omnidirectionally), in the context of motion this has asymmetric consequences for population-

level activity (Liu et al., 2021). Specifically, for a moving object, spreading activation works 

as an extrapolation mechanism by selectively enhancing neural responses at the leading edge 

of the population-level response (Figure 3B). Under a population coding scheme, this causes a 

forward shift in the population position estimate. A relevant feature of this is that, when paired 

with a nonlinear output function, neurons that receive sub-threshold priming but not subsequent 

feed-forward input will not necessarily become active. This prevents unmet predictions (e.g., 
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in the areas surrounding an object's trajectory) from being passed up the visual hierarchy. In 

fact, the requisite conjunction between feed-forward and spreading activity in theory means 

that the extrapolation of non-linear motion can be achieved. This is because it is ultimately the 

driven signal which determines where the benefit of sub-threshold priming is expressed.  

For a given neural delay, the speed an object is moving dictates the extent of the spatial 

lag incurred – the faster an object moves, the greater the lag. An effective anticipatory response 

must therefore scale with stimulus velocity. To this end, Trenholm et al. (2013) showed how 

spreading activation can facilitate near-perfect ‘lag-normalization’ in electrically coupled 

(direction-selective) RGCs, across a range of stimulus velocities (Figure 3C). For uncoupled 

cells, they found that responses to a moving bar lagged as a function of its velocity. Conversely, 

coupled cells were found to begin responding when the bar reached an almost constant location 

on the retina relative to the cell, regardless of stimulus velocity. With a simple computational 

model, they showed that this remarkable ‘lag-normalization’ effect can be captured by the 

combined effects of velocity-dependence in the ganglion cell response (i.e., stronger responses 

to faster stimuli) and a gradual compounding of activity shared laterally between neighbouring 

cells (i.e., if a cell is initially primed, it in turn primes its neighbours more quickly, with this 

effect building up across successive neurons).  
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Spreading activation as a predictive mechanism is, however, incomplete. Firstly, the 

spatial extent of prediction that can be achieved via subthreshold spreading activation is 

limited. With non-linear thresholding, the system can only speed up to the moment that some 

afferent signal arrives and is further constrained by the spatial extent of local coupling. 

Secondly, spreading activation does little to limit activity at the trailing edge of evoked activity. 

As such, while coupled ganglion cells show lag-normalized response onsets, the timing of their 

peak response still displays a velocity-dependent lag (Trenholm et al., 2013, Figure 3C). To 

unambiguously encode the present location of a moving stimulus, the trailing edge of activity, 

which corresponds to the object’s outdated prior location, should ideally be ‘erased’. In the 

following section, we consider how various ‘dampening’ mechanisms can accomplish this.  

 

Figure 3. Retinal motion extrapolation. A) A subsection of the retinal network showing connections 

between bipolar, ganglion, and amacrine cells. B) Spreading activation as an excitatory extrapolation 

mechanism in the retina. Electrical coupling between bipolar/ganglion cells primes cells immediately 

along the current motion trajectory, causing a forwards shift in the leading edge of population-level 

ganglion cell activity. C) Empirical evidence of spreading activation via electrically coupled direction-
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selective ganglion cells in mouse retina — from Trenholm et al. (2013) – Nature Neuroscience. The 

left panels show the activity profiles of uncoupled (top) and coupled (bottom) direction selective 

ganglion cells (DSGCs). Coupled cells display ‘lag-normalization’ in their response onsets and begin 

responding when a moving stimulus reaches a fixed distance from their soma, regardless of its speed. 

Conversely, the uncoupled cells display a speed dependent lag in the onset of firing (no delay 

compensation). The right panels show aggregate estimates of firing onset (left) and peak (bottom), 

where the dynamics of coupled and uncoupled cells can be directly compared. D) Amacrine cells as an 

inhibitory extrapolation mechanism in the retina. E) Empirical evidence of feed-forward inhibition as 

a driver of motion extrapolation in the goldfish retina — from  Johnston & Lagnado (2015) – eLife. 

Peak firing occurs with ~0 delay relative to the arrival of the stimulus. However, when feedforward 

inhibition is disrupted, peak firing significantly lags the stimulus. Note that the onset of firing is, 

however, largely unaffected. 

 

5.3. Dampening mechanisms: dynamic gain control 

In their seminal investigation into retinal motion extrapolation, Berry et al. (1999) 

found that the degree of alignment between peak RGC activity and the stimulus was dependent 

on stimulus contrast. High contrast stimuli generated peaks of activity that roughly aligned 

with their leading edge, while low contrast stimuli generated peaks that lagged behind. To 

explain these observations, they invoked a contrast-dependent gain control mechanism. Under 

this account, if a cell receives strong input for an extended period of time its input ‘gain’ – that 

is, its responsiveness to further stimulation – is reduced. This dampens the cells response to the 

trailing edge of the stimulus, re-aligning population-level activity with the true position of the 

external stimulus. Strikingly, this mechanism breaks down at low image contrasts or very high 

movement speeds – where there is insufficient stimulation to trigger the gain control 

mechanism – at roughly the same points where human perceptual performance also becomes 

impaired (Berry et al., 1999). 
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Dynamic gain control features in many other models of retinal motion extrapolation 

(e.g., Chen et al., 2013; Trenholm et al., 2013). An important question has therefore been how 

dynamic gain control is actually implemented at the level of neural circuits. On theoretical 

grounds, it has been argued that feed-forward inhibition from starburst amacrine cells might 

play a role in modulating RGC gain (Nijhawan & Wu, 2009). This was based on the fact that 

different sections of their dendrites have different preferred motion directions, with direction-

dependent activity profiles. Specifically, they produce stronger responses to motion away from 

their cell body than toward, leading them to asymmetrically inhibit RGCs in response to 

moving stimuli (Euler et al., 2002). 

To illustrate this, consider a group of amacrine cells responding to a stimulus moving 

from left to right (Figure 3D). The population-level response of these neurons will be bi-modal, 

with a stronger response on the left side than the right. This is because cells on the left are 

exposed to motion that is predominately away from their cell bodies, generating stronger 

inhibitory activity, while cells on the right are exposed to motion which is predominantly 

towards their cell bodies, generating weaker activity. This asymmetry leads amacrine cells to 

more strongly inhibit RGC responses at the tail of the population-level response, shifting the 

weight of the activity distribution in the direction of motion.  

Recently, it has been directly demonstrated that feed-forward inhibition from amacrine 

cells drives anticipatory responding (Johnston & Lagnado, 2015; Menz et al., 2020). Firstly, 

amacrine cell activity profiles have been shown to possess the spatiotemporal features required 

to implement dynamic gain control (Menz et al., 2020). More strikingly, however, the selective 

disruption of inhibitory inputs to single RGCs has been shown to abolish anticipatory activity 

(Johnston & Lagnado, 2015). Specifically, the blocking of feedforward inhibition shifts the 

peak firing rate of ganglion cells from being roughly aligned with the leading edge of the 
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stimulus to lagging by ~200 ms (although the onset of activity is largely unaffected, Figure 

3E).  

Passive interactions between inhibitory and excitatory signals within the dendrites of 

ganglion cells can also explain why inhibitory signals more strongly affect the trailing edge of 

stimulus-evoked activity (Johnston & Lagnado, 2015). The core idea here is rather simple. For 

inhibitory inputs to be most effective they must be located between excitatory input and the 

soma and must be activated before the distal excitatory synapse – allowing them to ‘block’ 

incoming excitatory signals from reaching the soma (Koch et al., 1983). To meet these 

conditions, two things are required. Firstly, inhibitory synapses must outnumber excitatory 

synapses, with both being randomly distributed. This will mean that, on average, for any 

excitatory synapse on the dendritic tree, there are a greater number of inhibitory synapses 

located between it and the cell body. Secondly, stimuli must be moving away from the ganglion 

cell body, meaning they activate the proximal inhibitory synapse before the more distal 

excitatory synapse (Johnston & Lagnado, 2015 see their Figure 6B). The latter condition is 

what causes inhibitory inputs to most strongly affect the trailing edge of the population 

response, as the stimulus will be moving away from the cell bodies of the ganglion cells 

underlying it.  

The differing accounts for how asymmetric inhibitory profiles arise in the retina are not 

mutually exclusive. Rather they demonstrate how, viewed from two different perspectives — 

one population-level (Nijhawan & Wu, 2009) and one biophysical (Johnston & Lagnado, 2015) 

— the retinal circuitry possesses features which naturally facilitate motion extrapolation. By 

dampening activity at the trailing edge of the RGC activity distribution, this inhibitory 

modulation shifts the population position estimate forwards, predictively extrapolating an 

object’s encoded position. 
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6. Motion extrapolation mechanism in the brain 

Given the variety of mechanisms we have discussed, one might wonder whether all necessary 

extrapolation occurs in the retina, with delay-compensated representations sent to the brain to 

undergo further processing but not further extrapolation. This is not the case.  

Even assuming perfect compensation can be achieved during retinal processing, delays 

will continue to accrue during subsequent processing. Normatively, this means that further 

compensation, and thus the involvement of additional extrapolation mechanisms, is required. 

Empirically, while extrapolation occurs in the retina, extrapolation can also occur without 

retinal involvement. We know this for two reasons. Firstly, people perceptually extrapolate the 

position of objects which move into their blind spot, where no photoreceptors are stimulated, 

and hence no retinal activity is generated (Maus & Nijhawan, 2008). Secondly, perceptual 

illusions driven by motion extrapolation have been shown to occur for ‘cyclopean stimuli’ 

(Nieman et al., 2006). These require the combining of signals from both eyes to be seen – a 

process which occurs in the cortex, not the retina. This suggests the existence of extrapolation 

mechanisms in cortical visual regions.  

 

6.1. Evidence of extrapolation in the brain 

As in the retina, neurons in the brain have been shown to respond more quickly to 

moving than to static stimuli, effectively ‘anticipating’ their arrival. This has been observed in 

cat LGN (Orban et al., 1985) and area 17 (Jancke et al., 2004; Orban et al., 1985), as well as 

macaque area V1 (Benvenuti et al., 2020; Guo et al., 2007; Subramaniyan et al., 2018) and V4 

(Sundberg et al., 2006).  

Early work was carried out by Jancke et al (2004) who compared the population activity 

evoked by moving and static stimuli in cat area 17 (analogous to primate V1). As in the retina, 

representations of moving stimuli were found to be shifted in the direction of motion, relative 
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to static stimuli (see Figure 4A). Similar observations were subsequently made in macaque 

area V1 (Benvenuti et al., 2020; Subramaniyan et al., 2018) and V4 (Sundberg et al., 2006), 

with anticipatory activity, in some cases, building up hundreds of milliseconds before an object 

reached a neuron’s receptive field centre. This is reminiscent of (and indeed may partially 

reflect) retinal activity dynamics, where cells begin to fire hundreds of milliseconds before a 

moving stimulus reaches their receptive field centre (Berry et al., 1999). 

Notably, the degree to which cortical position representations have been observed to 

shift during motion has varied significantly across studies/species. For example, Jancke et al 

(2004) observed a peak latency shift of just ~16 ms (in cat area 17), whereas Benvenuti et al. 

(2020) observed significantly larger shifts in both onset (~400 ms) and peak latencies (in 

macaque V1), mirroring observations from rabbit and salamander RGCs (Berry et al., 1999). 

At present, evaluating whether such differences reflect true inter-species differences in the 

degree to which position signals are extrapolated remains difficult, given the limited number 

of recordings from any one species, and the wide variety of experimental and analytical 

techniques adopted. As such, this remains an important avenue for future research. 

Evidence of cortical extrapolation effects also comes from non-invasive human EEG 

recordings. For example, stimuli embedded in ‘apparent motion sequences’ – that is, chains of 

spatially and temporally separated flashes which generate the percept of a moving object – 

have been found to be processed more rapidly than when presented in isolation (Blom et al., 

2020, 2021; Hogendoorn & Burkitt, 2018; Turner et al., 2023). Relatedly, position 

representations for smoothly moving stimuli have been shown to be activated substantially 

earlier than for unpredictable flashed stimuli (Johnson et al., 2023). These studies provide 

evidence that object-position representations in the human visual system are similarly 

predictively ‘pre-activated’ in motion contexts. 
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 In the following sections, we consider specific examples of cortical extrapolation 

mechanisms. Following the structure of the previous section, we will first consider examples 

of asymmetric ‘enhancing’ and ‘dampening’ mechanisms. Then, we will shift focus to consider 

how motion extrapolation can occur as information is passed between neural regions. 

 

6.2. Enhancing mechanisms in the cortex 

In primate neurophysiology experiments, various techniques have been used to reveal 

the activity evoked by moving stimuli. Recently, voltage sensitive dye imaging was used to 

directly reveal spreading waves of activity within monkey V1, in response to both apparent 

(Chemla et al., 2019; see Figure 4B) and smooth motion (Benvenuti et al., 2020). For apparent 

motion (sequences of spatially and temporally separated flashes), travelling waves of activity 

have been observed to spread outwards omni-directionally after the presentation of a stimulus, 

facilitating the response to subsequent stimuli (Chemla et al., 2019). We note that this 

excitatory effect (as well as the corresponding inhibitory effects they observed, see below) can 

be modelled in a neural network with fully symmetric receptive fields, with asymmetries in 

excitation/inhibition arising at the population-level, in response to driven input from 

subsequent stimuli. 

For smooth motion, neurons in V1 exhibit a slow build-up of activity before stimulus 

arrival, with the extent of this build up depending on the length of preceding motion (Benvenuti 

et al., 2020). Following this early build-up of activity, neural responses peak around the time 

the stimulus reaches the cells receptive field centre (see their Figure 3C&4C). This provides 

some emerging evidence that full delay-compensation may be achieved for early cortical 

position representations. Similar observations (albeit of only partial compensation) have also 

been made in cat area 17 (Jancke et al., 2004). This anticipatory effect can be accounted for by 

assuming that neurons ahead of a moving stimulus receive lateral input from their neighbours, 
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prior to the feed-forward driven signal (Jancke & Erlhagen, 2010). If these signals are 

recursively integrated along the motion trajectory, a gradual build-up in predictive activity 

occurs (as in the retinal lag-normalization model developed by Trenholm et al., 2013). Strong 

evidence that lateral connections generate the trajectory-dependent build-up of anticipatory 

activity is given by the fact that the dependence of anticipatory activity on stimulation duration 

disappears for inter-hemifield motion; when an object transitions between hemifields, 

neighbouring neurons are no longer stimulated (Benvenuti et al., 2020).  

With human EEG recordings, it has been shown that the second stimulus in an apparent 

motion sequence is processed more quickly than the first (Blom et al., 2021). This is striking 

because until two stimuli have appeared it should be impossible to determine a motion 

trajectory, meaning it should be impossible to predict the location of the second stimulus. 

Again, this latency advantage can be accounted for by assuming there is an omni-directional 

travelling wave of activity, which spreads out from the initially stimulated retinotopic location 

(Jancke & Erlhagen, 2010). When this combines with feed-forward activity from the second 

stimulus, firing will occur more rapidly. As we noted above, this cortical ‘spreading activation’ 

mechanism is similar to the one found to contribute to ‘lag-normalization’ in the retina 

(Trenholm et al., 2013). However, the existence of long-range horizontal connections in early 

visual brain regions means that spreading activation can potentially contribute to more spatially 

extended forms of motion extrapolation (Allman et al., 1985; Blom et al., 2020; Bringuier et 

al., 1999; Jancke et al., 2004; Jancke & Erlhagen, 2010).  

Generally speaking, travelling activity waves are a widespread phenomenon in visual 

cortex (Sato et al., 2012). Of particular relevance here are the results of two recent theoretical 

studies, which shed light on the potential role that travelling waves play in facilitating neural 

motion extrapolation (Benigno et al., 2023; Heitmann & Ermentrout, 2020). Firstly, Heitmann 

& Ermentrout (see also Xie & Giese, 2002), showed that stimulus-locked travelling waves can 
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form when the breadth of inhibitory tuning exceeds that of excitatory tuning (3:1), with the 

addition of a slight asymmetry in excitatory tuning. Compared to the symmetrical waves of 

spreading activation discussed above, these waves have the potential to more substantially 

compensate for neural processing delays. This is because the underlying asymmetry in neural 

tuning drives a simultaneous dampening of the trailing edge of evoked activity (see Figure 3C 

in Heitmann & Ermentrout, 2020). Relatedly, Benigno et al. (2023) trained a neural network 

to predict subsequent frames of video input. They found that after training, a few frames of 

input could trigger complex wave patterns within the network, driving accurate predictions of 

future frames. Crucially, shuffling the lateral/recurrent connections within the network 

abolished both the waves and the network’s predictive accuracy, suggesting a crucial role for 

laterally spreading activity in visual prediction. Collectively, these studies further suggest that 

spreading activation within visual cortex, in the form of travelling waves, can naturally 

facilitate motion extrapolation. 

One important question regards the degree to which ongoing motion extrapolation 

occurs following early cortical processing. Recently via human EEG recordings it was shown 

that position representations for smoothly moving stimuli are activated substantially earlier 

(~70 ms) than for static stimuli (Johnson et al., 2023). In line with Benvenuti et al. (2019; 

Figure 3C&4C), early representations (i.e. those formed during the initial feedforward sweep 

of processing) were found to align with the real-time position of the stimulus (Johnson et al., 

2023; Figure 4D). This provides further evidence that early cortical position representations 

may be fully delay compensated. Crucially however, later position representations were 

progressively delayed suggesting that not all position information in the cortex is fully 

extrapolated.  

Does this mean that extrapolation ceases to occur after early visual processing? One 

possibility is that no further extrapolation occurs in the visual system, with downstream regions 
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(e.g., in motor cortex) left to handle any remaining necessary delay-compensation. However, 

due to the spatial blurring of EEG, it is also possible that select position representations in the 

visual hierarchy continue to be extrapolated (e.g., those involved in time-sensitive motor 

behaviour) but that this is masked by a predominance of non-extrapolated representations 

involved in less time-sensitive processes. Indeed, simultaneously sampling a mixture of 

position representations (as is the case when examining late EEG responses) would result in a 

progressively lagged average position signal even if a select few representations are still being 

extrapolated. Ultimately, the question of for how long, and in which visual regions, 

extrapolation continues to occur, remains an avenue for future investigation. Testing this may 

require direct neural recording in higher visual areas, to examine whether certain sub-

populations of cells (possibly those which project to motor areas and which play a role in 

representing the targets of speeded responses) continue to extrapolate position information.  

Furthermore, the question of exactly how discrete position estimates are ‘read out’ from 

population-level activity (see, Deneve et al., 1999; Erlhagen et al., 1999; Groh et al., 1997; Lee 

et al., 1988) must be addressed. In this article, we have considered mechanisms which shift the 

weight of population activity forwards in some way. However, to fully appreciate the extent of 

the extrapolative effects these mechanisms are having, we must understand how more 

downstream brain areas ‘read out’ population codes from visual cortex. For example, does the 

activity peak encode object position (as some existing literature tends to implicitly assume) or 

are other distributional features (i.e. the centroid/vector average) used instead?   
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Figure 4. Motion extrapolation in the cortex. A) Comparison of the population-level activity evoked 

by moving and static stimuli in cat area 17 — from Jancke et al. (2004) – Journal of Physiology. Activity 

50 ms after the onset of a flashed stimulus (top) vs activity 50 ms after a moving stimulus reached the 

same position (bottom). Activity for the moving stimulus is shifted in the direction of motion. B) 

Voltage sensitivity dye imaging (VSDI) of monkey visual cortex during the presentation of two stroke 

apparent motion (see inset stimulus diagrams) — from Chemla et al., (2019) – Journal of Neuroscience. 

The left sub-plot shows activity evoked by the apparent motion stimuli. Subthreshold excitatory activity 

spreads out from the initial flash, facilitating the response to the second stimulus and generating a 

directional wave of excitatory activity. However, the right sub-plot shows that this activity is sub-

additive (i.e. less than would be expected if simply adding the activity generated by two separate flashes 

presented in isolation). Plotting the magnitude of this non-linearity reveals an inhibitory wave of activity 

in the direction opposite to the apparent motion. C) Decoding expected, but not presented, stimulus 

representations from human EEG recordings – from Blom et al., (2020) – Proceedings of the National 

Academy of Science. The left sub-plot shows an apparent motion stimulus moving along a circular 

trajectory. At 0 ms the stimulus reaches the ‘final’ location, after which it reverses direction. The right 

sub-plot shows a temporal generalization matrix showing the proportion of trials classified as 

immediately ahead or immediately behind the final position. After the final stimulus, there is a brief 

period in which classifier assignment favours the ahead position, before incoming information is 

processed and the reversal is encoded. D) Comparison of time-to-peak position likelihood for static and 
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moving stimuli, from human EEG recordings – from Johnson et al., (2023) – eLife. Peak position 

likelihood (i.e. when there is the strongest evidence for the stimulus being in its present location) 

consistently occurs ~70 ms earlier for moving compared to static stimuli. For early representations, 

there is almost perfect delay compensation, with delays gradually accruing once more for later position 

representations. The right sub-panel illustrates the degree of spatial compensation that the observed 

temporal shifts yield, for different cortical processing levels. 

 

6.3. Dampening mechanisms in the cortex 

For two-stroke apparent motion, a travelling wave of inhibitory activity has been 

observed moving backwards from the second stimulus to the first (Chemla et al., 2019; see 

Figure 4B). This reveals the existence of inhibitory processes in the cortex which dampen the 

trailing edge of evoked population-level activity. Earlier, we discussed the critical role that 

amacrine cells play in inhibition-driven motion extrapolation in the retina. However, these cells 

are not present in the cortex. So how are the asymmetric inhibitory profiles necessary for 

motion extrapolation generated?  

Recall how passive interactions between excitatory and inhibitory signals in the 

dendrites of RGCs can selectively inhibit the trailing edge of stimulus evoked activity (Benigno 

et al., 2023; Heitmann & Ermentrout, 2020). This mechanism relies on general properties of 

synaptic arrangements, which likely apply to cells in many different brain areas. All that is 

needed is a proliferation of inhibitory synapses which are randomly and independently 

distributed relative to their excitatory counterparts. This ensures that for each excitatory 

synapse among the dendritic tree of a cortical neuron, there are a greater number of proximally 

located inhibitory synapses. Such an arrangement is crucial in optimizing the efficacy of 

inhibitory inputs (Koch et al., 1983). These conditions are almost certainly met in many regions 

of the visual cortex (Haider et al., 2013; Johnston & Lagnado, 2015), providing a general means 

for inhibitory gain control, and thus motion extrapolation, to be implemented.  
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Theoretically speaking, short-term synaptic depression (a reduction in synaptic efficacy 

due to the depletion of neurotransmitters; Abbott et al., 1997; Zucker, 1989) can have 

functionally similar effects to the retinal ‘gain control’ mechanisms discussed earlier. In 

particular, it has been shown that short-term depression of synapses in an attractor network 

model can support zero-lag tracking of a continuously moving stimulus (Fung et al., 2012). 

With sufficiently strong depression, the neural position can even predictively lead the stimulus 

by a fixed degree. More broadly, these mechanisms (retinal gain control, short-term synaptic 

depression) can be considered as special cases of the broader class of ‘neural adaptation’ 

mechanisms (see Feuerriegel, 2023). These all have the potential to dampen the trailing edge 

of stimulus evoked activity, and thus act as generic drivers of neural motion extrapolation. 

Finally, another generic way of dampening the trailing edge of evoked activity, is if 

excitatory and inhibitory representations are transmitted at different speeds (Figure 5, Barlow, 

1981). If a fast excitatory position signal is followed by a slow inhibitory signal, then the 

trailing edge of the evoked activity distribution will be erased by the lagging inhibition. This 

is similar to the inhibitory mechanisms in the retina. However, given the delay in inhibition, 

excitatory responses at the leading edge of evoked activity may avoid inhibition altogether, 

leading to a relative enhancement of activity and an even greater shift in the population position 

estimate. While this effect is most easily understood in retinotopic contexts (e.g., Figure 5), it 

theoretically enables the extrapolation of representations encoded in the distributed activity of 

non-contiguous cells. As long as inhibition lags excitation for given cell, this will shift the 

evolving population-level activity along its current representational trajectory. As such, despite 

the structural differences between the retina and early visual brain regions, there are multiple 

general mechanisms in the cortex capable of producing the asymmetric inhibitory profiles 

required for motion extrapolation.  
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Figure 5. Delayed inhibition as a generic extrapolation mechanism. A hypothetical scheme for 

predicting the future position of a moving object — adapted from Barlow (1981). A delayed inhibitory 

signal spatially lags behind a fast excitatory signal, resulting in an asymmetric inhibitory profile. This 

serves to ‘erase’ the trailing edge of the population level activity distribution, shifting the population 

position estimate forwards along the current trajectory of motion. This may also lead to an increase in 

the leading edge of the activity distribution, relative to when there is zero-lag inhibition, since the initial 

excitatory activity ‘escapes’ inhibition. 

 

7. Inter-regional extrapolation mechanisms 

 So far our focus has predominantly been on extrapolation mechanisms operating within 

a neural region (i.e. recurrent processes). However, the way in which information is transferred 

between regions can also drive motion extrapolation. In this section, we consider how inter-

regional feedback mechanisms might extend the spatial range of motion extrapolation. We will 

also examine how specific patterns of feed-forward connectivity can facilitate responses to 

moving stimuli in downstream cortical regions. We will highlight recent research showing how 
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simple synaptic learning can drive the spontaneous emergence of asymmetric connectivity, 

allowing for efficient motion extrapolation during inter-regional information transfer.  

 

7.1. Feedback connectivity 

In apparent motion sequences there is a latency advantage for the third stimulus in the 

sequence, relative to the second (Blom et al., 2021). One might argue that this is simply due to 

a compounding of laterally spreading activity (e.g., Trenholm et al, 2015). However, it is also 

possible that this reflects the existence of more ‘high-level’ predictive mechanisms, which are 

employed once a motion trajectory can be extracted, and precise position predictions can be 

made. Given the large distances between stimuli in apparent motion designs, this likely requires 

the involvement of motion processing areas with large receptive fields. Consistent with this, 

numerous studies have suggested that feedback from area MT to V1 may facilitate the 

generation of motion-based predictions (Matsuyoshi et al., 2007; Muckli et al., 2005; Sterzer 

et al., 2006; Vetter et al., 2015; Wibral et al., 2009). Specifically, there is evidence that 

disrupting MT activity with TMS diminishes perceptions of apparent motion (Matsuyoshi et 

al., 2007) and interferes with a detection advantage normally observed for targets presented in 

apparent motion traces (Vetter et al., 2015). There is also evidence that area MT is involved in 

the ‘pre-play’ of activity associated with spatiotemporally predictable stimulus sequences in 

V1 (Ekman et al., 2017). Following the presentation of the first stimulus in a learned motion 

sequence, a time-compressed wave of anticipatory activity in V1 representing the full sequence 

is observed, even when the rest of the sequence is not presented. Evidence for the involvement 

of MT in such pre-play comes from the fact that the amplitude of BOLD activity in this area 

correlates with the amplitude of anticipatory V1 activity.  

 Considering this feedback connection, one important question is whether feedback 

signals are ultimately inhibitory or excitatory. In other words, does inter-regional feedback 
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serve to boost activity at the leading edge, or diminish activity at the trailing edge of the evoked 

activity distribution? Classical accounts of predictive visual processing argue that feedback is 

predominantly inhibitory (Rao & Ballard, 1999). Consistent with this, there is evidence that 

feedback from MT may reduce V1 activity for predictable motion sequences (Alink et al., 

2010). However, if feedback from MT drives pre-play in V1 (Ekman et al., 2017), this suggests 

that feedback must be excitatory, or must ultimately result in excitation. This is consistent with 

the fact that, in apparent motion sequences, representations of stimuli which are expected but 

not presented can nevertheless be decoded from EEG recordings (Blom et al., 2020; Blom et 

al., 2021). Similarly, computational simulations have suggested that even subthreshold 

excitatory feedback is sufficient to drive motion anticipation and extrapolation, even across 

periods of occlusion (Erlhagen, 2003). As such, there is reason to believe that both excitatory 

and inhibitory feedback might play a role in motion extrapolation in the cortex.  

 In addition to examining the effect of feedback connections (excitation/inhibition), 

future research may consider the relative breadth of these connections. For example, it may be 

important to consider whether feedback connections are more or less diffuse than forward or 

lateral connections, within a given cortical region. This is because, in existing models, relative 

differences in the breadth of excitatory and inhibitory tuning have been shown to play an 

important role in generating motion-extrapolation effects (Chemla et al., 2019; Heitmann & 

Ermentrout, 2020; Xie & Giese, 2002). To better understand the potential role that feedback 

connections play in neural motion extrapolation, it may be necessary for future studies to 

jointly consider the breadth and modulatory effect of such connections, within a given neural 

region. 

 

7.2. Feedforward connectivity 
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Perhaps the simplest way to achieve motion extrapolation is via the presence of 

spatially symmetric divergent feedforward connections between cortical regions. In the same 

way that horizontal excitation (‘spreading activation’) within a region serves to prime neurons 

ahead of a moving stimulus, divergent feedforward excitation can prime neurons in a 

downstream region, ahead of the currently stimulated location. This effect was modelled by 

Baldo and Caticha (2005) in a network of leaky integrate-and-fire (LIF) neurons with location-

tuning. In their model, divergent feedforward activity primes cells in the direction of motion, 

leading them to fire more quickly in response to subsequent input. This has the same effect as 

the spreading activation mechanisms detailed above, however the anticipatory input is received 

via laterally divergent feedforward connections rather than local horizontal connections.    

Importantly, symmetric divergent connections alone will lead to omnidirectional 

priming (i.e. all retinotopically adjacent downstream neurons will receive ‘anticipatory’ input). 

As we noted above, in motion contexts omnidirectional priming can ultimately have 

asymmetric consequences on the population-level (i.e. it shifts the leading edge of activity 

forwards), particularly when combined with non-linear thresholding (Liu et al., 2021). As such, 

non-selective divergent connectivity alone can be a functional driver of motion extrapolation. 

However, predictive extrapolation is best achieved when activity is selectively transmitted to 

retinotopic areas ahead of the current trajectory of motion (Kaplan et al., 2013; Nijhawan & 

Wu, 2009). To achieve this, feedforward connectivity must be asymmetrically weighted, such 

that the most strongly weighted connections are with those downstream neurons that code for 

the future position of an object. In the following section, we review recent work showing how 

such connectivity can emerge spontaneously from local synaptic learning rules. 

 

8. Unsupervised learning of asymmetric connectivity patterns 
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Here, we discuss the role that spike timing dependent plasticity (STDP) plays in the 

emergence of asymmetric connectivity profiles, enabling directionally-specific information 

transfer between cortical regions (Abbott & Blum, 1996; Burkitt & Hogendoorn, 2021; Fu et 

al., 2004; Lim & Choe, 2008; Rao & Sejnowski, 1999; Sexton et al., 2023). STDP is a form of 

long-term plasticity in which the relative timing of pre- and post-synaptic spikes determines 

whether a synapse is potentiated or depressed. The STDP learning rule dictates that presynaptic 

spikes occurring just before a postsynaptic spike lead to long-term potentiation, whereas those 

occurring just after lead to long-term depression (Bi & Poo, 1998; Markram et al., 1997). To 

visualize how STDP can generate spatially asymmetric patterns of connectivity, we can 

consider a single postsynaptic neuron that receives input from a set of direction-selective 

neurons (Figure 6A). Motion in the rightward direction would cause the leftwards presynaptic 

cells to fire before the postsynaptic cell, strengthening these connections. Conversely, 

rightward neurons would fire after the postsynaptic cell, leading to depression of these 

synapses. Importantly, because the neurons have direction selectivity, equal exposure to both 

directions (as would be expected during development) still yields an asymmetry – that is, even 

though STDP still occurs for the anti-preferred direction, its effect is less pronounced due to 

the lower level of activity (Fu et al., 2004). Consequently, STDP generates asymmetrically 

tuned connectivity between neurons, amplifying the extrapolatory effect already given by 

simple divergent connectivity (Baldo & Caticha, 2005).  

Fu, Shen, & Gao (2004) provide physiological support for this theoretical mechanism. 

They examined the receptive field properties of neurons in cat V1, in response to drifting 

gratings which contained motion information in either the preferred or anti-preferred direction 

of the cell. They found that the receptive field peak shifted in the opposite direction to the 

drifting grating (Figure 6B). This is precisely the effect required to achieve motion 

extrapolation, as it enables neurons to fire in anticipation of a moving object, and shifts the 
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population-level position estimate forward along the motion trajectory. Additionally, they 

observed that motion in one direction selectively enhanced the opposing side of the receptive 

field, arguing that this phenomenon is consistent with an asymmetry in the spatial distribution 

of direction-selective inputs to the neuron. By modelling the proposed connections, they 

showed how STDP can naturally give rise to this asymmetry.  

 

 

Figure 6. Unsupervised learning of asymmetric connectivity patterns A) Spike timing dependent 

plasticity (STDP) drives the learning of asymmetric connectivity patterns between layers of a neural 

network. Before learning, there are spatially uniform connection weights between neurons. The STDP 

learning rule dictates that presynaptic spikes occurring just before a postsynaptic spike (i.e. for positive 

tpre-tpost values) lead to long-term potentiation (i.e. positive weight changes, Δw), whereas those 

occurring just after lead to long term depression. Simply allowing STDP-driven learning to unfold 

causes a spatial asymmetry in the connection weights for neurons in the higher layer, shifting the 
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neurons receptive field in the direction opposite to stimulus motion. This allows the higher level neuron 

to ‘anticipate’ the arrival of a moving stimulus. B) Empirical evidence of receptive field shifts in the 

direction opposite to stimulus motion – from Fu, Shen, & Gao (2004) – Journal of Neuroscience. The 

receptive field from a single neuron in cat visual cortex is shown, after being mapped with a grating 

stimulus containing either rightward (grey line) or leftward (black line) internal motion. The effective 

receptive field of the neuron is shifted in the direction opposite to stimulus motion. C) Average 

receptive field shifts before and after STDP-driven learning, across various stimulus speeds – from 

Burkitt & Hogendoorn (2021) – Journal of Neuroscience. The magnitude of the receptive field shift 

(displayed as a proportion of the entire visual space modelled) scales (non-linearly) with stimulus speed. 

In this study, an STDP time window spanning 200 ms was used, meaning that presynaptic spikes 

arriving within 100 ms before or after a postsynaptic spike would cause a change in the synaptic weight. 

 

The role of STDP as a neural delay compensation mechanism was specifically 

considered by Burkitt and Hogendoorn (2021), who examined how STDP drives motion 

extrapolation across a range of stimulus velocities (Figure 6C). They simulated a two-layer, 

feedforward network comprised of several velocity-tuned subpopulations, with neural 

transmission delays along the feedforward connections. In this network, spikes are generated 

within an input layer of location- and velocity-tuned neurons in response to a moving stimulus. 

These then propagate to a second layer via divergent, feedforward excitatory connections. For 

connections that were initially spatially symmetric, simply allowing the dynamics of STDP to 

unfold caused the receptive fields of neurons in the second layer to shift in the direction 

opposite to motion. The magnitude of this shift depended on the velocity-tuning of the neural 

population, with greater velocities yielding greater receptive-field shifts.  

Earlier we described how lateral priming effects can compound across neurons, such 

that neurons further along a motion trajectory receive greater priming. The same integrative 

effects of extrapolation may occur in the case of STDP along feedforward pathways. That is, 
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given that the visual system is comprised of multiple levels, receptive field shifts caused by 

STDP are likely to occur at several points throughout the visual hierarchy. This idea was 

recently addressed by looking at the accumulation of receptive field shifts in a multilayer 

network (Sexton et al., 2023). Sexton et al. (2023) showed that the overall capacity to 

extrapolate the position of a moving stimulus is greatly increased with the number of levels in 

the network, due to the accumulation of receptive field shifts at each higher layer. By looking 

at the distribution of spiking activity after network connection weights were trained with STDP, 

they showed that the degree of forward shift in the represented location of a moving object was 

in some cases sufficient to fully compensate for the delays embedded in the network (up to 

100ms in a six-layer network). In terms of the temporal compensation achieved, comparing the 

magnitude of the receptive field shifts reported (~.001 to .028 cycles) to their corresponding 

velocities (0.1 to 1 cycles/s) yields estimates of temporal compensation on the order of 10 to 

28ms per layer. 

Given its prevalence among excitatory synapses in the visual cortex (Bi & Poo, 1998; 

Markram et al., 1997; Waters et al., 2008), STDP has the potential to act as a general delay-

compensation mechanism, driving extrapolation during inter-regional information transfer 

(Note that because RGCs are the only neurons that produce action potentials in the retina, 

STDP is unlikely to be involved in retinal motion extrapolation). In addition to the potential 

role played by STDP in inter-regional connectivity, some authors have highlighted the potential 

for STDP to generate asymmetric intra-regional (recurrent) connectivity. For example, Lim 

and Choe (2008) modelled an array of orientation-tuned cells with bilateral (horizontal) 

excitatory connections. In response to a rotating stimulus, they found that STDP at lateral 

synapses led to an increase in excitation in the direction of motion, which caused a forward 

shift in the representation of the stimulus. Likewise, Rao and Sejnowski (1999) showed how 

STDP can produce predictive activity in a model network of recurrently connected neurons 
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with retinotopic inputs. In their network, an array of neurons receive feedforward input from a 

moving stimulus as well as from their horizontally connected neighbours. After allowing the 

recurrent connections to adjust their weights according to STDP, cells began to fire several 

milliseconds before arrival of the stimulus input. Finally, we described modelling work earlier 

in which asymmetries among local excitatory connections led to the generation of stimulus-

locked travelling waves (Heitmann & Ermentrout, 2020). Although not specifically addressed, 

in principle it is possible that STDP could be involved in the formation of such asymmetries. 

Looking forward, one open question is the degree to which STDP can dynamically 

compensate for specific neural delays, for example when there are different transmission delays 

between regions in a network. The work of Burkitt and Hogendoorn (2021) showed that STDP-

driven extrapolation can scale across a range of stimulus velocities. However, in this work the 

degree of compensation achieved by STDP was fixed relative to the precise neural delay. In 

order to compensate for a specific delay, extrapolated representations generated at one level 

would have to be adjusted based on their correspondence with subsequent input at a lower 

level, in a manner similar to predictive coding (Rao & Ballard, 1999). This would entail 

‘calibrating’ the degree of receptive field shift for a given delay between two visual areas, such 

that the downstream area is able to accurately represent the real-time position of an encoded 

object. This topic was addressed by Hogendoorn and Burkitt (2019), who extended the classical 

hierarchical predictive coding model to consider transmission delays between layers. They 

argued that prediction errors within each layer are minimized when some form of extrapolation 

is implemented along the feedforward and feedback pathways. This has the benefit of 

generating representations that are aligned across each hierarchical level at each moment in 

time. This type of hierarchical network structure would potentially be suitable to allow 

extrapolated representations to be calibrated to a specific neural transmission delay. We have 

described how STDP is a viable mechanism underlying extrapolation along feedforward 
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pathways, however the question of how such shifts could be calibrated, presumably via 

feedback pathways, remains an avenue for future research.  

 Finally, it is important to note an apparent contradiction between the theoretical 

findings described in this section and the empirical work described earlier. Specifically, whilst 

Sexton et al. (2023) found that STDP can (in theory) support motion extrapolation across 

multiple layers of processing, Johnson et al. (2023) found no clear evidence of ongoing 

extrapolation beyond the very earliest stages of cortical processing. Generally speaking, given 

the range of potential extrapolation mechanisms we have considered, the lack of evidence for 

sustained cortical extrapolation is puzzling. However, as noted earlier, a number of outstanding 

questions need to be addressed before we can confidently conclude that no ongoing 

extrapolation occurs. Specifically, neural recordings with increased spatial specificity are 

needed to examine whether select position signals (i.e. those involved in guiding speeded 

action) continue to be extrapolated, and the fundamental question of how discrete position 

estimates are actually ‘read out’ by higher cortical areas must be addressed (see Section 6.2).  

 

9. The neural implementation of ‘model-based’ motion extrapolation 

Up to this point we have considered extrapolation mechanisms that are essentially 

‘wired in’ to the low-level structure of the visual system. Given this, it may be tempting to 

conclude that all extrapolation is achieved automatically, through hard-wired mechanisms, 

without the need for an internal model of the world (e.g., a model of the physical laws of 

motion). In this final section, we briefly caution against this view.  

Many researchers have proposed that the brain ultimately employs ‘model-based’ 

predictive strategies – reliant upon internal generative models – to achieve accurate and 

efficient sensory processing (Erlhagen, 2003; Grush, 2005; Jiang & Rao, 2022; Khoei et al., 

2017; Kwon et al., 2015; Mumford, 1992; Rao & Ballard, 1999). Theoretically speaking, these 
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mechanisms are extremely powerful, allowing for optimal inferences to be drawn from 

uncertain sources of information (under some assumptions). A classic example is recursive 

Bayesian estimation algorithms (e.g., Kalman filtering), in which uncertain sensory 

information is combined with predictions from an internal generative model, with their 

respective weights determined by their relative uncertainty. Computational models built around 

this general approach have been able to explain perceptual and neural data in object-

localization tasks (Khoei et al., 2017; Kwon et al., 2015), in some cases explicitly 

accommodating for the effects of neural delays (Khoei et al., 2017; Perrinet et al., 2014). More 

generally, ‘predictive coding’ networks, in which hierarchical generative models learn the 

spatial (Rao & Ballard, 1999) or spatio-temporal (Jiang & Rao, 2022; Lotter et al., 2020) 

regularities of natural scenes, have been able to account for a range of neural and perceptual 

phenomena. The success of these models suggests that the brain may indeed rely on ‘model-

based’ strategies during visual processing.  

So how and where are these implemented? To answer this, it is important to recognize 

that the distinction we are drawing between hard-wired ‘model-free’ mechanisms and more 

abstract ‘model-based’ mechanisms, is in fact rather fuzzy. This is because the generative 

models core to ‘model-based’ strategies, must ultimately be coded into networks in a 

distributed fashion, via the modification of synaptic connection weights. As such, they are also 

in a sense ‘wired in’ to the structure of the network. To further complicate things, these 

networks typically learn their generative models via exposure to sets of images/videos, making 

it difficult to identify the underlying regularities that the model has learnt to exploit. Given this, 

it is possible that the neural mechanisms we have reviewed above, are actually constituent parts 

of a distributed ‘model-based’ processing strategy/strategies (e.g., Kaplan et al., 2013; Khoei 

et al., 2017).  
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There is, however, some evidence which suggests that more temporally extended 

predictive strategies are only implemented in high-level regions, with longer intrinsic 

timescales (Jiang & Rao, 2022; Murray et al., 2014; Runyan et al., 2017). For example, in the 

double-drift illusion, where there is a marked mismatch between the actual and perceived 

position of a moving object, the neural correlates of conscious perception appear to lie in 

anterior brain regions outside the visual system (Liu et al., 2019). Under such conditions, it has 

been argued that perceptual experience may be the end product of a model-based process, 

involving an internal model of motion dynamics (Kwon et al., 2015). The fact that in these 

cases the neural correlates of perception lie in frontal regions suggests that these higher areas 

may read out information from the visual system and, over relatively long time scales, combine 

it with internally generated predictions, to refine estimates of both past and future states (e.g., 

the ‘timeline’ model of perception; Grush, 2005; Hogendoorn, 2022; Jiang & Rao, 2022).  

Broadly consistent with this, it has been suggested that early visual processing may ‘re-

format’ incoming sensory information, to facilitate subsequent linear extrapolation (Hénaff et 

al., 2019, 2021). To illustrate the core idea behind this line of research, consider a 16 x 16 pixel 

video. Each frame of this video can be represented as a point in a 256 dimensional ‘pixel space’, 

with each dimension representing the brightness of a specific pixel. As the video progresses, 

new points will appear, drawing out a ‘trajectory’ through this space. For naturalistic videos 

these trajectories are complex and curved, making it difficult to linearly extrapolate their 

evolution into the future. Strikingly however, empirical estimates of representational 

trajectories though neural and perceptual spaces (e.g., spaces made from considering the 

individual activity of neurons within a larger population) are much straighter (Hénaff et al., 

2019, 2021). This suggests that visual processing serves to straighten the temporal trajectories 

of natural visual input, ‘re-formatting’ it so as to facilitate linear extrapolation, potentially in 

higher cortical regions.  
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To sum up, the focus of this review has been on local neural mechanisms. However, it 

is important to highlight the rich concurrent stream of computational research which examines 

how more abstract predictive algorithms and more global information processing architectures 

enable the spatio-temporal regularities of visual input to be learnt. Bridging of the gap between 

these two levels (biological and computational), and understanding how these more abstract 

computational strategies can be instantiated in biologically-plausible networks, is an exciting 

avenue for future research.  

 

10. Summary and conclusions 

We have considered how the brain can predictively extrapolate the represented position 

of moving objects, (partially or fully) re-aligning internal representations with the current state 

of the outside world in the face of neural delays. We have identified a variety of mechanisms 

which facilitate extrapolatory shifts of population-level neural activity. These all involve some 

form of asymmetry which either enhances the leading edge and/or dampens the trailing edge 

of the evoked activity distribution. Working along the visual stream, we have considered 

specific examples, at the level of local neural circuits. In particular, we have shown how local 

(recurrent) excitatory and inhibitory processes serve to shift the represented position of a 

moving object along its current trajectory of motion. We have also considered how 

extrapolation can be achieved during inter-regional information transfer, and have highlighted 

how asymmetric connectivity patterns which support extrapolation can emerge spontaneously 

via spike-timing-dependent plasticity. Finally, we have considered how more abstract ‘model-

based’ predictive strategies (e.g., recursive Bayesian estimation) might be neurally instantiated.  

While the focus of this article has been on the visual system, it is important to recognize 

that neural delays are ubiquitous throughout the brain. As such, it is crucial that delays (and 

the mechanisms which serve to compensate for their deleterious effects) are accounted for in 
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models of neural processing. Moreover, consideration of delays can radically challenge 

intuitive (and widely held) views of neural processing. For example, the existence of 

heterogenous delays within our sensory systems means that the timing of neural events (and 

perceptual representations) is necessarily divorced from the timing of the external world. This 

renders an intuitive Newtonian view of sensory processing (in which the timing of sensory 

events is encoded as the timing of the neural activity representing those events) unviable (see 

Hogendoorn, 2022), and necessitates the internal representation(s) of time. Here, we have 

presented an integrative framework for understanding how the brain determines the real-time 

position of moving objects, despite neural delays. Looking forwards, further work remains to 

be done to fully understand the effect of delays on sensory processes and neural dynamics more 

generally. 
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