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Abstract 18 
 19 
Neural processing of sensory information takes time. Consequently, to estimate the current 20 
state of the world, the brain must rely on predictive processes – for example, extrapolating 21 
the motion of a ball to determine its probable present position. Mounting evidence suggests 22 
that extrapolation occurs during early (retinal) processing, however it remains unclear 23 
whether extrapolation continues during later-stage (cortical) processing. Moreover, we 24 
currently lack a spatially precise characterisation of extrapolation effects in the human brain, 25 
with most studies relying on invasive neurophysiological techniques in animals. Here, we 26 
address these issues by demonstrating how precise probabilistic maps can be constructed 27 
from human EEG recordings. Participants (N = 18) viewed a stimulus moving along a circular 28 
trajectory while EEG was recorded. Using LDA classification, we extracted maps of stimulus 29 
location over time and found evidence of a widespread temporal shift occurring across distinct 30 
processing stages. This accelerated emergence of position representations indicates 31 
progressive extrapolation occurring at multiple stages of processing, with representations 32 
across the hierarchy shifted closer to real-time. We further show evidence of representational 33 
overshoot during early-stage processing following unexpected changes to an object’s 34 
trajectory, and demonstrate that the observed dynamics can emerge spontaneously in a 35 
simulated neural network via spike-timing-dependent plasticity.   36 
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Introduction  37 
 38 
Neural processing of visual information takes time. Retinal ganglion cells produce spikes at 39 
latencies of ~20-70 ms and additional delays accumulate as these signals pass on to 40 
downstream regions1,2. For time-sensitive interactions with dynamic environments, delays are 41 
problematic. For instance, imagine a hunter trying to take down bolting prey, or a tennis player 42 
trying to return a 200 km/h serve, while only having access to outdated visual information. 43 
For the tennis player, a delay of even just 50 ms will cause their ball-position estimates to be 44 
off by 2.8 metres. The fact that such behaviours are still possible raises an important question: 45 
if visual processing is delayed, how do we accurately localize moving objects in real time? 46 
 Neurophysiological recordings in non-human animals have revealed clear evidence of 47 
predictive motion extrapolation occurring during the earliest stages of visual processing (see2 48 
for a recent review). For example, retinal ganglion cells in salamanders, rabbits, mice and 49 
monkeys have been found to ‘anticipate’ the arrival of moving stimuli such that the peak of 50 
population-level activity approximately aligns with the leading edge of the stimulus despite 51 
phototransduction delays3–7. Similar anticipatory effects have also been observed in early 52 
cortical regions of cats8,9 and monkeys10–13. 53 
 Within a hierarchical predictive coding framework14 motion extrapolation can help to 54 
minimize prediction error and thus the metabolic cost of sensory processing15. However, this 55 
relies upon extrapolation occurring at all stages of processing, not just the earliest, to avoid 56 
the re-emergence of delays and misalignment of sensory representations across hierarchical 57 
layers. Yet within the existing literature, extrapolatory effects have been observed 58 
predominantly in early visual regions (i.e. retina, LGN, and V1), and it is unclear to what degree 59 
neurons downstream from the retina simply inherit their extrapolated activity profiles, 60 
without actively driving further extrapolation. As such, an important open question is whether 61 
neural motion extrapolation is a multi-stage phenomenon, that occurs during later-stage 62 
cortical processing.  63 

To address this question, one path forward lies in using more global measures of neural 64 
activity, to concurrently probe distinct stages of visual processing. To this end, anticipatory 65 
effects have recently been observed in human M/EEG 16–19 and fMRI recordings20, with some 66 
recent evidence from our own lab suggesting that extrapolation may only occur during very 67 
early (i.e. pre-cortical) processing17. However, all of these past studies have been limited in 68 
their ability to examine stimulus representations with fine-grained spatial resolution, so have 69 
been unable to clearly resolve the underlying predictive dynamics. 70 
 Here, we develop a method for extracting high-resolution maps of a visual stimulus’ 71 
position over time from EEG recordings. This allows us to precisely reconstruct the trajectories 72 
of moving stimuli, revealing evidence of overshoots when stimuli disappear or reverse 73 
direction (consistent with18). To determine whether widespread extrapolation occurs across 74 
multiple stages of visual processing, we train machine learning classifiers on the evolving 75 
cascade of neural responses which follow the onset of static stimuli. We find evidence of the 76 
same activity patterns occurring in response to smoothly moving stimuli, but with a 77 
cumulative, compensatory shift in their timing. Specifically, activity patterns associated with 78 
temporally distinct stages of processing, which are activated sequentially under unpredictable 79 
conditions, emerge earlier than expected when viewing smoothly moving (i.e. predictable) 80 
stimuli. This accelerated emergence of position representations leads to increased temporal-81 
alignment of representations across processing stages, reducing the gap between the 82 
encoded and actual position of the stimulus. Finally, we provide a simple, biologically plausible 83 
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model that captures these dynamics, by demonstrating that they emerge spontaneously, 84 
without supervision, at all levels of a hierarchical neural network via spike-timing-dependent 85 
plasticity (STDP). 86 
 87 
Results 88 
 89 

Participants (N = 18) each completed two experimental sessions. In each session they 90 
viewed 2000 localiser stimuli (4000 total), consisting of a white wedge-shaped stimulus 91 
randomly flashed in 40 equally-spaced positions around an invisible circle (Figure 1A). 92 
Participants also viewed 960 smooth motion sequences in each session (1920 total), in which 93 
the same stimulus moved along a circular trajectory for 1.5-3.5s, before either disappearing 94 
or reversing its direction at an unpredictable location (Figure 1B). Following reversals (50% of 95 
trials) the stimulus continued moving for between 0.5-1s before disappearing. 96 
 97 
Decoding stimulus-position information from EEG recordings 98 
 99 

To characterise how stimulus-position information is encoded in neural activity, we 100 
first examined whether it was possible to predict the position of the static localiser stimuli 101 
from participants’ neural response patterns. At each timepoint, we fit multivariate linear 102 
models to predict the position of a given stimulus. Because these positions are angular (i.e. 103 
circularly distributed), we trained models to predict the sine and cosine of the stimulus’ 104 
angular position from the voltage at all electrodes. We scored the performance of these 105 
models by calculating the inverse absolute angular error (‘decoding score’) between the 106 
predicted and actual position of a stimulus (following21, see Method).  107 

Cross-validation revealed clear evidence of stimulus-position information in 108 
participants’ neural activity emerging on average ~75 ms after stimulus onset and remaining 109 
sustained for ~500 ms (p < .01 cluster corrected, Figure 1C). A searchlight analysis (Figure 1C 110 
inset) indicated that a stimulus’ position was best predicted from neural activity recorded over 111 
the occipital cortex. Examining average decoding performance (75-250 ms) at each localiser 112 
position, revealed that all positions could be accurately decoded, with a slight qualitative 113 
advantage for stimuli in the lower visual field (Figure 1D).  114 

A temporal generalization analysis22 revealed activity dynamics that were 115 
predominantly transient and evolving, with a strong diagonal response in the temporal 116 
generalization matrix and only brief, transient periods of peri-diagonal generalization (Figure 117 
1E, p < .01 cluster corrected). Re-running the analysis on frequency-specific power estimates 118 
(i.e. the relative pattern of oscillatory power across electrodes at a given frequency), revealed 119 
that position information was predominantly encoded in the alpha/low-beta range (~10-20 120 
Hz, see Figure 1F; consistent with16).  121 

Taken together, these dynamics are consistent with the delayed propagation of 122 
position-specific activity patterns through a hierarchical network of brain regions following 123 
stimulus onset. The predominance of a diagonal pattern within the temporal generalization 124 
matrix suggests that stimuli trigger evolving sequences of neural activity, reflecting distinct 125 
stages of sensory processing22–25. Re-running the temporal generalization analysis with a focus 126 
on sequentially predicting the location of successive stimuli (Figure 1G) revealed that 127 
information about multiple stimuli is encoded across distinct stages of processing at any given 128 
timepoint (consistent with23,24). The fact that stimulus-position information was spectrally 129 
localised in the alpha/low-beta range is in line with the recent suggestion that such rhythms 130 
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may be an oscillatory ‘fingerprint’ of information processing within hierarchical predictive 131 
networks under neural delays16,26.  132 

Figure 1. Stimulus design and characterisation of location-specific neural activity patterns. A) 133 
Localiser stimuli were randomly presented in 40 equally spaced positions tiling an invisible circle 134 
around fixation. B) In the smooth motion sequences, participants viewed the stimulus moving along a 135 
circular trajectory at 360°/s for 1.5-3.5s before disappearing. In 50% of trials, stimuli reversed their 136 
direction mid-way through the sequence. Following a reversal the stimulus continued moving for 0.5 137 
to 1s. C) Model decoding score (fractional inverse absolute angular error, 0 = guessing, 1 = perfect 138 
prediction, see Method) is plotted over time. Predictions are based on brain activity recorded at 139 
varying time points relative to localiser onset (x-axis). Black dots indicate timepoints where prediction 140 
accuracy significantly differs from chance (p < .01 cluster corrected). Inset shows the results of a 141 
searchlight analysis over electrodes plus their immediate neighbours. Highlighted electrodes show the 142 
posterior/occipital sites used in the subsequent LDA-based analyses. D) Average decoding 143 
performance (75-250 ms) at each localiser position. E) Results of a temporal generalisation analysis in 144 
which the performance of timepoint-specific decoders is assessed across all testing time points. The 145 
full generalisation matrix is plotted in greyscale with cluster-corrected timepoints overlaid in colour (p 146 
< .01). The region marked with a black box indicates the training time-period (75-125 ms) for 147 
subsequent LDA-based mapping. F) Results of a frequency-specific decoding analysis in which 148 
normalized power estimates were used as the input features to the model. The full results are plotted 149 
in greyscale with cluster-corrected timepoints overlaid in colour. G) Temporally generalised decoding 150 
of successive localiser stimuli. Coloured regions show above chance generalization for each stimulus 151 
respectively (p < .01 cluster corrected).   152 
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Mapping the position of moving stimuli 153 
 154 
Having confirmed that the localisers evoked position-specific activity patterns across 155 
successive hierarchical levels, we next examined whether we could leverage these patterns to 156 
continuously track the position of the stimuli during smooth motion. First, we trained 157 
multiclass linear discriminant analysis (LDA) classifiers on participants’ neural responses to the 158 
localisers, treating each position as a distinct class. Then, from participant’s neural responses 159 
to the smoothly moving stimuli, we extracted predicted posterior class probabilities via the 160 
pre-trained LDA models. In other words, we extracted a prediction as to the probability that 161 
the stimulus was in each localiser position at a given timepoint. Averaging the probabilities 162 
extracted from models trained 75-125 ms after localiser onset (see boxed region in Fig. 1E) we 163 
were left with a matrix of position probabilities over time (i.e. a probabilistic spatio-temporal 164 
map).  165 

Figure 2 shows three such maps time-locked to either stimulus onset, stimulus offset 166 
or the reversal point in the motion sequences. Examining these, it is clear that the position of 167 
the moving stimuli can be tracked from participants’ neural response patterns. This, in itself, 168 
is non-trivial as smoothly moving stimuli do not evoke the well-defined onset/offset responses 169 
that have previously been leveraged to decode the position of ‘apparent motion’ stimuli16,18. 170 
The fact that we can map the position of smoothly moving objects via a bank of pre-trained 171 
static position representations indicates that the position-specific activity patterns evoked by 172 
static and dynamic stimuli overlap, at least partially (consistent with17).  173 

Figure 2. Mapping the position of moving stimuli. Panels A) – C) show the three events of interest: 174 
stimulus onset, stimulus offset, and stimulus reversal. Panels D) – F) show probabilistic spatio-temporal 175 
maps centred around these three events. Diagonal black lines mark the true position of the stimulus. 176 
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Horizontal dashed lines mark the time of the event of interest (stimulus onset, offset, or reversal). Red 177 
indicates high probability regions and blue indicates low probability regions relative to chance (0.025).  178 
 179 

To examine the shape and precision of the decoded probability distributions, we took 180 
two averaged time slices: 1) directly following motion onset (75-125 ms; Figure 3A), and 2) in 181 
the lead-up to stimulus offset (-1000-0 ms; Figure 3B). Examining the first (Figure 3A), we could 182 
effectively get a snapshot of the decoded probability distribution, just after visually-evoked 183 
activity first reaches visual cortex. From this we see that participants’ early neural responses 184 
already encoded a remarkably precise probability distribution over space (FWHM of above 185 
chance probabilities = 54° polar angle). Examining the second time slice (Figure 3B), we 186 
effectively get a snapshot of the decoded probability distribution, following extended 187 
exposure to motion – that is, the ‘steady state’ of decoded position information during 188 
motion. Notably, the distribution has narrowed (FWHM of 36° polar angle) and evolved from 189 
being more-or-less symmetric to become positively skewed in the direction of stimulus 190 
motion. The trailing edge of the distribution became suppressed and the leading edge became 191 
enhanced, mirroring the changes observed in directly imaged neural activity of non-human 192 
animals (see2). These changes serve to shift the high probability region closer towards the 193 
real-time position of the stimulus. Since these results are generated from models trained on 194 
early neural responses to the localisers (75-125 ms), this provides evidence of extrapolation 195 
occurring during early-stage human visual processing.  196 

Considering Figure 3A&B, an important auxiliary question arises: how might a point-197 
estimate of the stimulus’ real-time location be read out from these probability distributions? 198 
One option is to take the point of maximum probability (green triangles in Figure 3A&B). 199 
However, even after considerable exposure to predictable motion (panel B) this estimate 200 
continues to lag the real-time position of the stimulus (marked with the vertical black line). 201 
An alternative option is to take the centroid (i.e. the vector average), to better leverage 202 
information contained within the entire distribution. Interestingly, this yields an estimate 203 
(orange triangles) which initially aligns with the distribution peak (panel A), but which then 204 
shifts, after ongoing exposure to predictable motion, to align with the real-time position of 205 
the stimulus (panel B). Plotting both peaks and centroids across time (Figure 3C&D), we can 206 
see that the peak estimate consistently lags the real-time position of the stimulus. In contrast, 207 
the centroid estimate approximately tracks the real-time stimulus position, yet overshoots 208 
when the stimulus disappears or reverses. This suggests that early visual processing may serve 209 
to encode a probability distribution over space in a manner which allows for different point 210 
estimates to be read out, depending on whether accurate instantaneous position readout is 211 
required. At any given time point, if a real-time estimate of an object’s position is required, 212 
the centroid may be taken. However, if speed is not paramount (i.e. no action will be taken) 213 
the peak can instead be taken, as, after a brief delay, this will give a more reliable estimate of 214 
where the stimulus was (i.e. it will not suffer from overshoot when the stimulus changes 215 
direction). For consideration of how this speculative proposal may be further tested, see the 216 
Discussion.   217 
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Figure 3. Examining the shape and potential discrete read-out of decoded probability distributions. 218 
Panels A) and B) show averaged time slices through the maps in Figure 2, at motion onset (75-125) 219 
and mid-motion (-1000-0 ms) respectively. Green inverted triangles show the point of peak probability 220 
and orange triangles show the centroid (vector average) of the distribution. Panel C) shows the 221 
difference between the probability distributions extracted from mid-motion and immediately 222 
following stimulus onset. In panels A-C) the true position, and direction, of the stimulus is marked by 223 
a vertical black dashed line and horizontal black arrow. Panels D) and E) show timepoint-specific 224 
markers of peak probability (green) and centroid (orange), overlaid on the real-time position of the 225 
stimulus around stimulus offset and reversal. Peaks and centroids are calculated every 15 ms, with the 226 
certainty of the estimate (taken as the peak height or vector average length, respectively) dictating the 227 
size of the plotted dot. 228 
 229 
Accelerated emergence of representations across distinct processing stages 230 
 231 
Turning to the primary question of interest, we examined how stimulus-position information 232 
was encoded across distinct stages of visual processing. Specifically, we extracted probability 233 
distributions over possible positions from decoders pre-trained on data recorded at different 234 
timepoints following localiser onset (Figure 4). In this way, training time effectively becomes 235 
a proxy for hierarchical level, with time-point-specific decoding performance reflecting the 236 
presence or absence of position information at specific levels of representation. Then, instead 237 
of averaging across decoders (as we did to generate Figure 2), we can simultaneously consider 238 
all extracted probability distributions at once. Importantly, the temporal generalisation matrix 239 
(Figure 1D) revealed a predominantly diagonal pattern, validating that decoders trained on 240 
different timepoints learn different activity patterns, thus indexing distinct stages of 241 
processing (stable activity would result in a constant, square pattern of generalisation, which 242 
we do not observe, see22). Using training time as a proxy for processing stage, we can 243 
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therefore examine how position-specific information is encoded across different stages of 244 
processing. (Note, this does not mean we can infer anything about the cortical locus of such 245 
processing, only that we are decoding from distinct activity patterns.) 246 

To investigate the cascade of neural responses evoked by moving stimuli, after training 247 
the LDA models on localiser-evoked activity, we took 1s epochs of EEG data in the lead up to 248 
stimulus offset or reversal (i.e. during sustained periods of smooth motion), and extracted 249 
posterior probabilities over the localiser positions from the pre-trained, timepoint-specific 250 
models. We then realigned the probabilities to the true position of the moving object. This 251 
allowed us to generate an average snapshot of how location information is encoded, at any 252 
given time, across multiple stages of visual processing during ongoing exposure to motion. If 253 
moving stimuli evoke the same cascade of neural responses as static stimuli, without any delay 254 
compensation, then the decoded position of the stimulus would sit along the diagonal line in 255 
Figure 4A-B (‘No Compensation’ line). That is, position representations encoded at later stages 256 
of processing will progressively lag those encoded at earlier stages, due to a compounding of 257 
delays as information travels along the processing hierarchy. If, instead, perfect delay 258 
compensation is achieved, then the decoded position of the stimulus would sit on the vertical 259 
line in Figure 4A-B (‘Full Compensation’ line), with the real-time position of the stimulus 260 
encoded across all processing stages.  261 

Examining Figure 4A, we see that the bulk off the high probability region (in red) is 262 
shifted away from the No-Compensation line towards the Full-Compensation line. This 263 
indicates a shift in the timing of evoked responses, with representations emerging earlier than 264 
would be expected without delay compensation. To generate point estimates of the encoded 265 
position of the stimulus across processing stages, we overlay the timepoint-specific peak 266 
probabilities (in white). We chose the peak, as opposed to the centroid, as the most 267 
conservative discrete estimator, since the centroid already showed extrapolative properties 268 
(see Figure 3). However, the results are unaffected when substituting the centroid (see 269 
Supplement 1).  270 

Examining the peak position estimates in Figure 4A&B, we see a sustained forward 271 
shift away from the No-Compensation line, with the distance between the points and No-272 
Compensation line increasing over time. This is indicative of sustained extrapolation 273 
occurring, leading the encoded position of the stimulus to increasingly deviate from what 274 
would be expected as a consequence of neural delays.  275 

One reasonable concern here is that such a shift may be driven by autocorrelation of 276 
position signals at successive timepoints. That is, the position of a smoothly moving object is 277 
predictive of itself over short time windows. Hence, the position information within 278 
participants’ neural responses will be autocorrelated. Since neighbouring positions are likely 279 
to generate more similar neural activity patterns, this could conceivably blur the extracted 280 
positional probabilities. While such smearing is unlikely to affect peak probability estimates, 281 
we nevertheless sought to empirically rule out the possibility that the observed shift is simply 282 
an artifact of autocorrelation.  283 

To this end, we ran a control analysis on ‘synthetic’ EEG responses to simulated motion, 284 
which we constructed by averaging across successively lagged ERPs evoked by an ordered 285 
sequence of localiser stimuli. That is, we created a matrix in which each subsequent row 286 
contained the response to the neighbouring localiser, temporally offset by the time taken by 287 
the stimulus to move between these positions. Averaging across these, the resulting synthetic 288 
EEG response simulates the neural response to a localiser stimulus moving at 1 cycle per 289 
second around the display, without the presence of actual coherent motion. This allowed us 290 
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to create a control condition containing autocorrelated stimulus information but no predictive 291 
dynamics (since the constituent signals were evoked by individual localisers). Analysing these 292 
control data exactly as we did for the true motion trials (Figure 4B), we can see that the high 293 
probability region is centred along the ‘no-compensation’ line, demonstrating that 294 
autocorrelation cannot account for the observed spatio-temporal shift.  295 

To statistically test for a difference in the slopes of the peak-position estimates from 296 
the actual and synthetic datasets, we fit a linear regression model to the group-level data. We 297 
predicted the peak position estimate from training timepoint and data type (actual vs 298 
synthetic) as well as their interaction. Crucially, the interaction term was significant (β = -299 
0.018, std err = .002 t = -7.48, p < .001), indicating that the slopes of the fitted lines were 300 
different for the actual and synthetic datasets. Overall, these results suggest that the encoded 301 
position of the stimulus is shifted forwards after exposure to predictable motion, with this 302 
shift growing for later emerging neural representations. This is indicative of sustained, 303 
progressive extrapolation during cortical visual processing, resulting in the accelerated 304 
emergence of position representations and a gradual accumulation of position shifts along the 305 
processing hierarchy.  306 
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 307 
Figure 4. Decoding position information across distinct processing stages. Panels A) – B) show 308 
probability distributions over spatial positions (x-axis) extracted from timepoint specific decoders (y-309 
axis). White dots show the points of peak probability (in 15 ms steps), with their size being proportional 310 
to the size of the peak estimate, with overlaid regression lines and standard errors. In all panels the 311 
vertical black dashed line marks the real-time position of the stimulus (‘Full Compensation’), and the 312 
diagonal dashed line marks the delayed position of the stimulus (‘No Compensation’). Panels C) – D) 313 
show schematic depictions of the simulated STDP and control networks. In the STDP network, the 314 
receptive fields of neurons (example neurons are highlighted in black) shift in the direction opposite 315 
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to motion after STDP-driven learning, allowing neurons to effectively ‘anticipate’ the arrival of a 316 
moving stimulus. In the control model, no shift occurs and receptive fields are symmetrical. Panel E) 317 
shows the between-layer signalling delay (Δt) and synaptic time constant (𝜏) used in the simulations. 318 
Also shown is Figure 1D from26 which demonstrates that hierarchical predictive networks with delays 319 
in this approximate range (boxed white region) have oscillatory impulse response functions (IRFs) in 320 
the alpha/low-beta range (the range in which we found position-specific information could be best 321 
decoded). Panels F-G) show simulated activity from the STDP and control networks, smoothed for 322 
visualisation purposes. Plotting conventions are the same as in panels A-B).  323 
 324 
Accounting for the observed dynamics in a hierarchical network via STDP  325 
 326 
What might drive progressive extrapolation during cortical visual processing? Below, we 327 
provide a minimal biologically plausible model that captures the observed dynamics.  328 

Given that we observed shifts across multiple processing stages (as indexed by 329 
timepoint-specific decoders), we implemented a general learning mechanism that is known 330 
to exist across cortical regions: spike-timing dependent plasticity (STDP). This is a form of 331 
synaptic plasticity whereby synapses are strengthened when presynaptic cells fire shortly 332 
before a postsynaptic action potential, and weakened when they fire shortly after27,28. Recent 333 
research has shown how this simple associative learning mechanism can drive motion 334 
extrapolation as activity passes along the visual hierarchy29–31. Applying STDP to feedforward 335 
connections spontaneously produces an asymmetrical connectivity pattern, whereby the 336 
receptive fields of downstream neurons shift in the opposite direction to motion (see Figure 337 
4C). This allows these neurons to ‘anticipate’ the arrival of a stimulus that is about to enter 338 
their (original) receptive field, driving a forwards shift in the population-level activity 339 
distribution (see2 for review).  340 

We simulated a 5-layer network with transmission delays, with feedforward 341 
connectivity profiles subject to the STDP-driven receptive field shifts reported by Sexton and 342 
colleagues31. The network comprised of 21 subpopulations of neurons tuned to velocities 343 
between -2 and 2 cycles/s (where negative velocities indicate counter-clockwise motion). Each 344 
level of the network comprised 1000 neurons, with 11 ms inter-layer signalling delays and a 345 
synaptic time constant of 10 ms. Crucially, hierarchical predictive networks with delays in this 346 
general range have been found to produce activity which oscillates in the alpha/low-beta 347 
range (see26 Figure 1D, reproduced here in Figure 4E); the same range in which we found 348 
stimulus-position information could be best decoded (see Figure 1F). We simulated firing rates 349 
across the network in response to a stimulus traversing a circular trajectory at 1 cycle/s (see 350 
the Method). We also included an initial period of velocity estimation, starting at the onset of 351 
motion, in which information about the stimulus velocity is integrated. During the earliest 352 
timepoints, activity across the velocity subpopulations is widespread, but quickly becomes 353 
centred on populations with tuning at or close to the actual stimulus velocity (see Method 354 
and Supplement 1). 355 

Figure 4F-G shows maps of the activity across two simulated networks: one in which 356 
STDP-driven learning has occurred (Figure 4F) and an otherwise identical control network in 357 
which STDP-driven learning has not occurred (Figure 4G). To compare the activity of these 358 
networks to the EEG results, we computed the average activity across all neural 359 
subpopulations per level and timepoint – in effect extracting a macroscopic ‘neural image’ of 360 
the stimulus at each level of the network. Re-centering these activity profiles and averaging 361 
over time (as in Figure 4A&B) allowed us to then compare the position of the peak population-362 
level response, relative to the No-Compensation and the Full-Compensation lines, in the same 363 
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way as for the EEG data. Following STDP-driven learning, the activity evoked by a moving 364 
stimulus is shifted forwards off the no-compensation line (Figure 4F). Conversely, in the 365 
control model (Figure 4G) no shift occurs, with activity centred on this line.  366 

This simulation serves to demonstrate that STDP-driven learning, and the resultant 367 
asymmetries in the receptive fields of hierarchically organised neurons, is a biologically 368 
plausible and minimally sufficient mechanism that can generate the accelerated emergence 369 
and forwards shifting of stimulus-position representations which we observed. Strikingly, 370 
these latency shifts occur entirely unsupervised. Through a known organisation principle 371 
(velocity tuned sub-populations; see15) and local synaptic learning rule (STDP27,32), these 372 
dynamics emerge at all levels of the processing hierarchy, with a gradual accumulation of 373 
position shifts across levels (i.e. progressive extrapolation), mirroring what we observed in the 374 
EEG recordings of the human observers. (For an additional exploratory analysis of the 375 
timecourse/emergence of this shift see Supplement 2). 376 
 377 

Discussion  378 
 379 
We have shown that probabilistic maps of the position of a moving stimulus can be generated 380 
from EEG recordings. We first reconstructed the trajectory of moving stimuli from early visual 381 
responses and found evidence of predictive overshoots following unexpected trajectory 382 
changes. Then, after training classifiers on the evolving cascade of neural activity patterns 383 
which follow the onset of static localiser stimuli, we found that the same activity patterns are 384 
triggered by moving stimuli (evidenced by successful cross-generalization), but with a clear 385 
shift in their timing. Specifically, we observed an accelerated emergence of object-position 386 
representations, corresponding to a forwards shift in the neurally encoded position of the 387 
moving stimulus at higher levels of processing. As a simple, biologically plausible model of this 388 
progressive shift, we demonstrated that these dynamics emerge at all levels of a simulated 389 
hierarchical neural network via spike-timing-dependent plasticity (STDP).  390 
 To our knowledge, this study is the first to provide evidence of progressive, cumulative 391 
motion extrapolation during later-stage (cortical) visual processing. Evidence of neural motion 392 
extrapolation in early visual regions has previously been reported in both human and non-393 
human animals (e.g., 3,9,10,17,18). However, an important outstanding question has been 394 
whether motion extrapolation is a widespread, multi-level phenomenon, which continues 395 
beyond the earliest stages of processing. Indeed, while pre-cortical extrapolation mechanisms 396 
have been well-characterised2, it has remained unclear whether cortical regions simply inherit 397 
their extrapolated activity profiles from these upstream pre-cortical regions. Our observation 398 
of a progressive shift in the encoded position of smoothly moving objects, across distinct 399 
processing stages, provides a clear answer to this question, indicating that continued 400 
extrapolation of object-position information in the cortex does occur.  401 
 A recent paper from our own lab17 also reported evidence of extrapolation in the early 402 
visual response, but did not observe any later-stage extrapolation. However, there are several 403 
key differences in the experimental and analysis approaches across these studies that may 404 
explain this difference. Firstly, whereas the stimuli in Johnson et al. (2023) moved linearly 405 
across a hexagonal grid, our stimuli moved along a circular trajectory at constant eccentricity, 406 
providing greater trial numbers and an improved signal-to-noise ratio. Secondly, stimuli in the 407 
present study moved much more quickly (~48 dva/s at its inner edge) than in Johnson et al. 408 
(2023; ~10 dva/s), and so potentially activated a largely distinct population of neurons. Finally, 409 
whereas Johnson and colleagues inspected the evolution of neural codes over time for 410 
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evidence of extrapolation, here we were able to extract probability maps across space (i.e. 411 
akin to the ‘neural image’ of the stimulus, see7), allowing us to directly estimate spatial 412 
extrapolation without additional curve-fitting steps. Altogether, by fixing the eccentricity of 413 
the stimulus and collecting more repetitions of the same trajectory, we significantly improved 414 
the signal-to-noise ratio of the decoding, enabling us to adopt a more direct decoding 415 
approach and generate clear position maps (with a 5-fold increase in precision relative to our 416 
own recent attempts16). Given that the temporal generalization analysis provided evidence of 417 
distinct processing stages unfolding over a longer time scale, we were able to consider shifts 418 
in position representations up until 400 ms post stimulus onset (as compared to 150 ms17). 419 
Overall, this revealed a clear, progressive shift in the timing of positional representations 420 
across temporally distinct processing stages.  421 
 One salient feature of the current results is that, while we find evidence of an 422 
extrapolative temporal shift, this shift is not complete. That is, peak positional probabilities 423 
never align with the real-time position of the stimulus (although centroid estimates do align 424 
with real-time in the early visual response, see Figure 3 and Supplement 1). As we have 425 
discussed elsewhere2, it is difficult to tell whether partial shifts such as these are due to 426 
incomplete extrapolation, or rather to the fact that EEG recordings necessarily tap into a 427 
mixture of signals from different cortical regions (some of which may be fully extrapolated, 428 
and some may not be extrapolated at all). In the latter case, only signals involved in time 429 
sensitive localisation may be fully extrapolated. Ultimately, distinguishing between these 430 
possibilities will likely require the use of invasive recording procedures, where activity can be 431 
isolated to precise neural populations. What the current pattern of results does tell us is that 432 
not all position-related activity is fully extrapolated. This is sensible, as many visually-evoked 433 
signals will carry auxiliary position information in addition to the actual feature they encode 434 
(since they arise from a retinotopically specific location). Because extrapolation comes with a 435 
cost (i.e. extrapolated activity must be ignored/corrected when expectations are violated), a 436 
more efficient strategy may simply be to bind featural and position information 437 
retrospectively.  438 

Central to the question of whether partial or full extrapolation is achieved is an 439 
understanding of how the position of an object is actually read out from visual regions by 440 
downstream/effector areas. Addressing this is beyond the scope of the current study, however 441 
the present findings raise an interesting hypothesis. We have shown that a probability 442 
distribution over possible location can be linearly decoded from early brain activity patterns, 443 
and that the shape of this distribution changes after exposure to motion – shifting towards 444 
the real-time stimulus position. Considering the observed changes, a hypothesis which 445 
emerges is that the shape of this distribution is modulated in such a way as to allow different 446 
point estimates of a moving object’s location to be read out, depending on current task 447 
demands. Specifically, if accurate real-time interaction is paramount, then an estimate of the 448 
stimulus’ real-time position may be derived from the centroid of the distribution. However, 449 
when the stimulus disappears or changes trajectory this can overshoot and be unreliable. As 450 
such, when real-time interaction is less important, the peak of the distribution may be taken, 451 
yielding a more stable, but delayed, estimate of the stimulus’ position (i.e. it reliably tells you 452 
where the stimulus just was). In other words, at any given moment, different estimators may 453 
be used, either to determine where a stimulus just was with high-reliability (peak), or where 454 
a stimulus probably now is, with lower reliability (centroid). To properly test this idea, future 455 
studies will need to vary the speed of the moving stimulus. The central test will be whether 456 
the centroid shifts to align with the real-time position of the stimulus regardless of its speed, 457 
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serving as an effective real-time estimate. If this occurs, then future studies would also need 458 
to determine whether/how downstream regions can extract summary measures (such as a 459 
centroid) of population-level activity in early visual regions, and ultimately how these relate 460 
to behaviour (such as reaching or related targeting actions).  461 

By simulating the activity of a hierarchically-organised network of neurons, we showed 462 
how STDP-driven learning can drive the accelerated emergence of object-position 463 
representations, in an unsupervised fashion. Our main aim in presenting this result is to show 464 
how a simple cortical mechanism can in principle drive the sustained, progressive 465 
extrapolation we observed. Indeed, given the existence of velocity-tuned neural 466 
subpopulations, and the ubiquity of STDP-based learning throughout the cortex, the 467 
simulations provide compelling support for our empirical findings, as they suggest that 468 
something additional would be needed to prevent such temporal shifts from occurring. 469 
Crucially, these shifts will only occur for sequences of input to which we are frequently 470 
exposed (like smooth motion), and will also depend on the specific plasticity of the underlying 471 
sensory region.  472 

Importantly, in presenting the network simulations, our intention is not to claim that 473 
STDP is the sole drive of neural motion extrapolation. In prior work a variety of other 474 
extrapolation mechanisms have been well catalogued, with many operating during pre-475 
cortical visual processing (see2). These can drive forwards shifts in the evoked population-level 476 
distribution of neural activity, and may well have contributed to the motion-induced shape 477 
changes we observed in the probability distributions decoded from the early visual response 478 
(i.e. < 150 ms). As such, we caution against taking the STDP network model as a complete 479 
model of neural extrapolation. Nevertheless, given its generality, we feel that STDP is an 480 
important candidate mechanism to consider – especially when accounting for widespread, 481 
progressive effects such as those we observed. Indeed, given the ubiquity of STDP, an 482 
interesting avenue of future research may involve examining whether sustained temporal 483 
shifts in the pattern of evoked neural responses can be found after ongoing exposure to 484 
‘motion’ through more abstract feature space, such as colour, luminance, or numerosity. 485 
Finally, a remarkable feature of the current model (and30,31) is that spontaneous motion 486 
extrapolation is achieved during purely feed-forward processing. However, future studies 487 
should consider further developing these models, building in recurrent and/or horizontal 488 
connections. These may act as putative mechanisms for fine-tuning the magnitude of STDP-489 
driven extrapolation in a delay-dependent fashion (i.e. calibrating the degree of shift to a given 490 
delay). 491 

In sum, we have shown how precise probabilistic maps of the position of a moving 492 
object can be generated from EEG recordings. Using this approach, we have provided clear 493 
evidence of progressive neural motion extrapolation occurring during visual processing in the 494 
human brain. Most strikingly, we have shown that after ongoing exposure to smooth motion, 495 
there is an accelerated emergence of position-specific activity patterns across distinct 496 
processing stages, corresponding to a forwards shift in the neurally encoded position of the 497 
moving stimulus. This provides the first clear evidence of cortical neural motion extrapolation 498 
in the human visual system. Finally, we have shown how these dynamics would be expected 499 
to emerge spontaneously, without supervision, at all levels of a hierarchical neural network 500 
via spike-timing-dependent plasticity (STDP) – providing a mechanism for widespread neural 501 
extrapolation/delay compensation.    502 
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Method 503 
Participants  504 
 505 
Eighteen observers (15 female, 18-35 years old with mean age of 23 years) participated in the 506 
experiment. Each observer completed 2 sessions across separate days. All had normal or 507 
corrected-to-normal vision, gave written informed consent at the beginning of each session, 508 
and were reimbursed AUD15 per hour. The experimental protocol was approved by the 509 
human research ethics committee of the University of Melbourne (Reference Number: 2021-510 
12985-16726-4).  511 
 512 
Stimuli 513 
 514 
Stimuli were generated using the Psychophysics Toolbox (Brainard, 1997) in MATLAB 2016a 515 
(Mathworks). Stimuli were presented on an ASUS ROG PG258 monitor with a resolution of 516 
1,920 × 1,080 running at 120 Hz. The stimulus was a white, truncated wedge presented on a 517 
uniform grey background (Figure 1). The inner and outer edges of the wedge were 7.7 degrees 518 
of visual angle (dva) and 9.4 dva away from fixation. The wedge covered 9° of polar angle with 519 
1.19 dva at the inner and 1.46 dva at the outer edge. During localiser trials the stimulus could 520 
appear in one of 40 locations tiling an invisible circle centred on the fixation point (see Figure 521 
1A). Localiser stimuli were presented for 100 ms, with an interstimulus interval of 100 ms (i.e. 522 
onset rate of 5 Hz). Smooth motion sequences began and ended in randomly determined 523 
localiser positions, with sequences separated by an interval of 500 ms. The smoothly moving 524 
stimulus had a velocity of 360° of polar angle per second (i.e. a 3° offset per frame).  525 
 526 
Task 527 
 528 
Participants viewed the stimuli while EEG was recorded. In the localiser block, participants 529 
viewed the stimulus being randomly presented in 40 equally spaced positions around fixation 530 
(50 repetitions per position, per session). In the smooth motion block, participants reviewed 531 
the same stimulus moving for at least 1.5 seconds before either disappearing or reversing 532 
direction at a randomly determined localiser position. Following reversals the stimulus 533 
continued to move for 0.5-1 seconds. Participants viewed 960 motion sequences per session 534 
(12 repetitions per position and motion direction). Participants were given a self-paced break 535 
halfway through the localisers and 5 self-paced breaks during the smooth motion sequences. 536 
To maintain participants’ attention, they were tasked with pressing a button whenever the 537 
stimulus changed from white to purple. This occurred 20 times during the localiser block and 538 
50 times during the smooth motion block. Neural responses to these ‘catch’ stimuli were not 539 
analysed. The order in which participants viewed the localiser and smooth motion blocks was 540 
randomised in each session.  541 
 542 
EEG acquisition and pre-processing  543 
 544 
64-channel EEG data, as well as data from six EOG electrodes (placed above, below, and next 545 
to the outer canthi of each eye) and two mastoid electrodes, were acquired using a BioSemi 546 
ActiveTwo EEG system sampling at 2,048 Hz. EEG data were re-referenced offline to the 547 
average of the two mastoid electrodes and resampled to 512 Hz. Bad channels noted during 548 
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data collection (mean of 1 per session, max of 3) were spherically interpolated using the MNE 549 
‘interpolate_bads’ function33.  550 
 For the support vector regression (SVR)-based decoding analyses (used to initially 551 
characterise the neural encoding of position-specific information) we extracted epochs of data 552 
(-200 to 1000 ms) relative to localiser onset. These were baseline corrected to the mean of 553 
the 200 ms period prior to stimulus onset. For the LDA-based mapping analyses, we draw a 554 
distinction between training and testing epochs. Training epochs were extracted from -200 to 555 
400 ms relative to localiser onset, and were baseline corrected (-200 to 0 ms prior to stimulus 556 
onset). Testing epochs were extract from the smooth motion sequences (-1000 to 1000 ms) 557 
relative to the events of interest (onset, offset, reversal), and were baseline corrected to the 558 
mean of the preceding 1000 ms period (i.e. one full cycle of motion). For the time-frequency 559 
based decoding analyses (see below), power estimates were extracted at 20 linearly spaced 560 
frequencies between 2 and 40 Hz using the tfr_morlet function in MNE, with the number of 561 
cycles, which are used to define the width of the wavelet’s Gaussian window 562 
(n_cycles/2*pi*f), logarithmically increasing from 3 to 10 across frequencies.  563 
 564 
Decoding analyses 565 
 566 
Principal component analysis was applied before decoding to capture 99% of the variance 567 
(transformation computed on training data and applied to testing data), to help de-noise the 568 
data34. 569 
 570 
SVR-based analyses 571 
 572 
To initially characterise the neural encoding of stimulus-position information we trained 573 
multivariate linear models (support vector regression with L2 loss) to predict the position of 574 
the localiser stimuli from participants’ neural activity patterns (following21). Specifically, we 575 
trained models to predict the sine and cosine of the angular position of the stimulus. A custom 576 
scoring function was used to calculate the fractional inverse absolute angular error (‘decoding 577 
score’) between the predicted and actual position of the stimulus:  578 

Decoding score = ((𝜋/2) − (
1

𝑛
∑ 𝑎𝑏𝑠 (arg (

𝑒
𝑖∗ŷ𝑗

𝑒
𝑖∗𝑦𝑗

))𝑛
𝑗=1 ) ) 𝜋⁄    (1) 579 

where ŷ𝑗  is the predicted angular position on trial j, and 𝑦𝑗 is the actual angular position of the 580 

stimulus on trial j. This is designed such that a score of 0 indicates chance performance and a 581 
score of 1 indicates perfect accuracy. Custom five-fold cross-validation was used to evaluate 582 
out-of-sample prediction accuracy ensuring no leakage between test and training sets.   583 

Temporal generalization analysis was conducted by examining how well models 584 
trained on neural activity patterns at one specific timepoint could predict the position of 585 
stimuli based on data from other time points (see22). A searchlight analysis across the scalp 586 
was conducted by running the decoding analysis using data from a single electrode plus its 587 
immediate neighbours (following35). The spectral locus of position information was examined 588 
by re-running the decoding analysis on frequency-specific normalized power estimates (i.e. 589 
the relative pattern of oscillatory power across electrodes in a given frequency band, see 16). 590 
Finally, to examine how successive stimuli were encoded (following23,24) we re-ran the 591 
temporal generalization analysis after splitting the localiser data in half. From one half we 592 
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extracted training epochs (0 to 500 ms) relative to the onset of each localiser. From the other 593 
half, we extracted testing epochs (-200 to 1300 ms) relative to every 5th localiser stimulus. We 594 
then iteratively predicted the spatial location of these stimuli followed by the locations of the 595 
four subsequent stimuli. Finally, we re-ran the analysis after switching training and testing 596 
sets. 597 
 598 
LDA-based mapping 599 
 600 
To map the location of the smoothly moving stimuli, we trained multiclass linear discriminant 601 
analysis (LDA) classifiers on individual participants’ neural responses to the localiser stimuli, 602 
treating each position as a distinct class. We then extracted predicted posterior class 603 
probabilities from these pre-trained LDA models, based off participants neural responses to 604 
the smoothly moving stimuli. Averaging the posterior probabilities across models trained 75-605 
125 ms after localiser onset yielded a single matrix of probabilities (i.e. a spatio-temporal 606 
probabilistic map of the stimulus’ position over time). To calculate the centroid at a given time 607 
point we took a weighted vector average: 608 

 𝑎̅ =
1

𝑛
∗ ∑ 𝑤𝑗 ∗ exp(𝑖, 𝑎𝑗)𝑛

𝑗=1        (2) 609 

where j indexes position, wj is the posterior probability at position j, i is the imaginary operator, 610 
and aj is the polar angle of position j (in radians). The centroid was then taken as the argument 611 
of 𝑎̅. 612 
 613 
Statistical analyses  614 
  615 
For the SVR-based decoding, we performed cluster-corrected one sample t-tests against zero 616 
using a critical alpha level of .01 and a cluster forming threshold of .01 (via the MNE function 617 
‘spatio_temporal_cluster_1samp_test’, with 212 permutations).  618 
 619 
Neural network modelling  620 
 621 
To simulate representations of stimulus position at different stages of cortical processing, we 622 
used a hierarchical network similar to that described by Sexton and colleagues31 (see30 for a 623 
two-layer implementation). The network consists of Nl layers, each comprising Nv velocity-624 
tuned subpopulations. Within each layer and velocity subset, there are Nn neurons with 625 
spatial tunings distributed across a circular interval [0, 1], each receiving feedforward activity 626 
from neurons in the layer below (excepting the first layer, which encodes the stimulus 627 
position). The feedforward weights W for each neuron follow a Gaussian distribution with 628 
width σw and mean μw:  629 

μ𝑤 =   𝑥𝑖
𝑙 + 𝛽𝑆𝑇𝐷𝑃𝑣𝑙                    (3) 630 

where 𝑥𝑖
𝑙 is the spatial position of the neuron i at layer l, 𝛽 is the STDP shift scaling parameter 631 

and STDPvl is the magnitude of the receptive field shift for the velocity v and layer l, as taken 632 
from31 (see Estimating STDP-driven receptive field shift magnitudes). The addition of the 633 
STDPvl term in Eq. (3) means that the distribution of feedforward activity does not remain 634 
symmetric as it progresses through each layer, but is shifted in line with the receptive field 635 
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shift magnitude. We included the scaling parameter 𝛽 in order to find STDP shift magnitudes 636 
that best fit the EEG data (see Fitting procedure). Firing rates are recorded during a simulation 637 
carried out across Nt timepoints, during which a point stimulus traverses a circular trajectory 638 
at 1 cycle/s. The stimulus position is encoded at each timestep t by the firing rate of neurons 639 
in the first (input) layer, 𝑟𝑣

1(t), described by a Gaussian distribution centred on the stimulus 640 
position and with width σp. The input layer neurons have a baseline firing rate rb, with stimulus 641 
magnitude equal to Srb. Unlike in Sexton et al. (2023), no spikes are generated: only firing rates 642 
are transferred between layers, subject to a transmission delay 𝑡delay .  643 

 644 
Firing rates at each higher layer are based upon (delayed) input from the layer below:   645 

    𝑟𝑣
𝑙(𝑡) =  𝑟𝑣

𝑙(𝑡 − ∆𝑡)𝑒
−

∆𝑡

𝜏m + 
∆𝑡

𝜏m
𝐼𝑣

𝑙 (𝑡)    (4) 646 

where τm is the passive membrane time constant, Δt is the length of the timestep used, and 647 

𝐼𝑣
𝑙 (𝑡) is the delayed input to the velocity subpopulation at this layer: 648 

𝐼𝑗
𝑙(𝑡) =  𝑊𝑣

𝑙−1 ∙  𝑟𝑣
𝑙−1(𝑡 − 𝑡delay)        (5) 649 

Following the simulation, a global estimate of the represented stimulus position is generated 650 
for each timepoint and layer, by taking a weighted average of firing rate distributions across 651 
all velocity subpopulations. The weights for each velocity are time-dependent: at motion 652 
onset activity is widespread across all velocity subpopulations, before becoming primarily 653 
dominated by the neural activity tuned to the stimulus velocity. (Note: this assumption is for 654 
the purposes of the analyses presented in Supplement 2, and the results of the main analysis 655 
do not hinge upon it.)  656 

Specifically, we defined a range of timepoints [0, Ti] in which information about the 657 
stimulus velocity is integrated. Starting at t=0, weights across velocity subpopulations are 658 
generated according to a Gaussian distribution centred on v=0, with width σg(t=0). At each 659 
subsequent timestep, the mean of the Gaussian, μg(t), is shifted in the direction of the true 660 
stimulus velocity by an interval such that μg(t=Ti) is centred on the true stimulus velocity. 661 
Likewise, σg(t) is decreased incrementally across each of the integration timesteps (see Figure 662 
5). Because information about stimulus velocity is also subject to transmission delays, the 663 
change in weights thus described is applied to each layer in a delayed manner. The weighted 664 
average of firing rates across all velocity subpopulations is calculated for each layer and 665 
timepoint, then normalized, to generate a final estimate of the global position representation 666 
at each layer and timepoint.  667 
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 668 
 669 
Figure 5. Contribution of velocity-specific receptive field shifts to global position representations. A) 670 
Magnitude of STDP-driven receptive field shifts across the velocity range -2 to 2 cycles/s, estimated 671 
based on the shifts reported by Sexton and colleagues31 (see Estimating STDP-driven receptive field 672 
shift magnitudes). Individual lines show STDP shift magnitudes for each layer of the network. B) 673 
Temporal evolution of activity weights for each velocity subpopulation during the simulation. At onset 674 
the activity is broadly tuned around 0 cycles/s, then shifts toward the true stimulus velocity (1 cycle/s) 675 
during the velocity integration period. Following the initial integration period, activity weights remain 676 
stable and centred on the true stimulus velocity.  677 
 678 
The precise parameter values used in the simulation are shown in Table 1, and were taken 679 
from Sexton and colleagues31 where applicable.   680 
 681 
Table 1 682 
Parameter Values Used in Numerical Simulation 683 

Name Value Description 

Nl 5 Number of layers 

Nn 1000 Number of neurons per layer 

Nv 21 Number of velocities 

σw 1/32 Standard deviation of anatomical connections 

σp 1/32 Standard deviation of stimulus input 

rb 5 Hz Baseline firing rate at input layer 

S 20 Stimulus intensity (a.u.) 

Δt 1 ms Timestep length 

Nt 300 Total simulation timesteps 

Ti 100 Velocity integration timesteps 
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τm 10 ms Membrane time constant 

𝑡delay  11 ms Transmission delay 

β .6 STDP shift scaling parameter 

σg(t=0) 2 Standard deviation of activity weights at onset 

σg(t=Ti) 1/8 Standard deviation of activity weights at Ti 

 684 
Estimating STDP-driven receptive field shift magnitudes 685 
 686 
The STDP shift magnitudes estimated by Sexton and colleagues31 are reported in the range 0.1 687 
to 1 cycles/s, as well as 2, 3, 4 and 5 cycles/s. We wished to include a range of velocities that 688 
was symmetric around zero, and for which the EEG experiment velocity used (1 cycles/s) was 689 
an intermediate value, to avoid any edge effects during averaging. Therefore, the values 690 
reported by Sexton and colleagues31 were extended by linearly interpolating between the 691 
values given for 1 and 2 cycles/s, and then inverting all positive values to generate a mirrored 692 
set of velocities tuned to the opposite directions. This allowed us to generate an estimate of 693 
STDP magnitudes for velocities in the range from -2 to 2 cycle/s, in 0.1 cycle/s increments (see 694 
Figure 5).   695 
 696 
Fitting procedure 697 
 698 
To compare the simulated network to the position representations decoded from EEG, we 699 
performed the recentering of the global position representations such that the real-time 700 
position of the stimulus is always centred on the midpoint, with lagged representations 701 
indicated by activity at any locations counter-clockwise of this central position. The resulting 702 
map plots position relative to stimulus on the horizontal axis and network depth (layer 703 
number) on the vertical axis.  704 

As with the EEG data, we can define two lines within this rotated map of positional 705 
representations: 1) a diagonal ‘No Compensation’ line, connecting the points at each 706 
layer/training timepoint where the stimulus would be represented in the absence of any 707 
extrapolation, given the stimulus velocity, temporal lag between layers and the compounding 708 
effect of the synaptic time constant on peak activity, and 2) a vertical ‘Full Compensation’ line 709 
representing the real-time stimulus position (perfect delay compensation/extrapolation). The 710 
degree of extrapolation can therefore be quantified by measuring where peak activity sits as 711 
a ratio of the difference between the No-Compensation and Full-Compensation lines (Figure 712 
6A). This ratio measurement provides us with a simple, straightforward way of comparing the 713 
degree to which positional representations are shifted in the EEG and simulated networks.  714 
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 715 
Figure 6. Calculating extrapolation magnitude. A) Neural activity in the rotated position representation maps 716 
can be characterised with reference to the ‘No Compensation’ line, indicating where the stimulus would be 717 
represented in the absence of any extrapolatory mechanisms, and the ‘Full Compensation’ line, indicating the 718 
current stimulus position and therefore where the stimulus would be represented in the absence of delays. The 719 
extrapolation magnitude is quantified by the actual neural representation (determined by the peak position of 720 
stimulus-driven activity), as a ratio of the distance between the No-Compensation and Full-Compensation lines. 721 
A single measurement of extrapolation magnitude was made at the final timepoint of the stimulation, in order 722 
to allow enough time for activity to propagate fully throughout the network and for the peak of neural activity 723 
(relative to the stimulus) to stabilise. B) Extrapolation magnitudes measured while varying the transmission delay 724 
and the STDP shift magnitude scaling parameter (β). Values within the range measured in the EEG analysis (.34 725 
to .40) are colour coded. Values outside this range are shown in grayscale. The point in this parameter space 726 
used in the main analyses (Figure 4) is highlighted in red.   727 
 728 

In the simulated network, the extrapolation magnitude for a given velocity is largely 729 
determined by the transmission delay and time constant (affecting primarily the position of 730 
the No-Compensation line, relative to the Full-Compensation line), and the magnitude of the 731 
STDP shifts (affecting primarily the position of the neural representation line, relative to the 732 
No-Compensation line). We ran the simulation while varying both transmission delay (tdelay; 5 733 
to 25ms) and STDP shift magnitude (via the scaling factor β; .1 to 2 times the values reported 734 
in Sexton and colleagues31), to find parameter values which led to an extrapolation magnitude 735 
that best fit the ratio derived from the EEG data (.36). The extrapolation magnitude 736 
measurement was made based on activity recorded at the final timepoint of the simulation, 737 
and at 400 ms for the EEG data. Figure 6B shows the values of delay time and STDP shift scaling 738 
parameter which produced extrapolation magnitudes most closely matching the EEG data. In 739 
line with Alamia and VanRullen26, we ultimately constrained the network to have an 11ms 740 
transmission delay (such that with recurrent connectivity it would, in principle, generate 741 
oscillatory activity in the alpha/low-beta range) and took the best fitting value of β within this 742 
row, for use in the subsequent analyses (tdelay = 11 ms, β = .3).  743 
 744 
Data and Code Availability  745 
 746 
EEG analysis code is available at: https://github.com/bootstrapbill/neural-location-decoding. 747 
The pre-processed EEG data files and neural network simulation code will be publicly available 748 
by the time of publication at: https://osf.io/sn4a7/.   749 

https://github.com/bootstrapbill/neural-location-decoding
https://osf.io/sn4a7/
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Supplementary Information  834 
 835 

Supplement 1: Replication of main latency shift using the distribution centroid as a 836 
discrete position estimate. 837 
 838 
To ensure that the main latency shift effect is robust across specific analysis choices, we re-839 
plotted Figure 4A&B overlaying the centroid (i.e. vector average), instead of the point of peak 840 
probability, as a discrete position estimate. Examining Figure S1, the same effect can be 841 
observed as we report in the main text, building confidence that this does not depend on the 842 
specific read-out method we choose to employ. In the main text we use the peak probability 843 
estimate as a more conservative read-out method, since this does not display the same 844 
extrapolative properties as the centroid during early processing (see Figure 3). 845 
 846 

 847 
Figure S1: Recreation of Figure 4A&B using the centroid, rather than peak, probability 848 
estimate. All plotting conventions are the same as in Figure 4.   849 
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Supplement 2: Examining prediction formation in empirical and model position 850 
representations 851 
 852 
 In the main analysis  we consider the ‘steady state’ of position representations formed 853 
after sustained exposure to motion along a predictable trajectory, and found evidence of 854 
progressive extrapolation. However, after the initial appearance of a moving object, position 855 
representations must necessarily lag, since motion extrapolation is only possible once the 856 
object’s velocity has been established. Here, we conduct an additional exploratory analysis to 857 
examine how rapidly motion extrapolation arises when a moving object first appears, and how 858 
the temporal evolution of this effect may be accounted for in the STDP network model.   859 

In Figure S2 (below) we compare how both decoded and simulated positional 860 
representations evolve over timepoints immediately following stimulus onset. Initially, the 861 
decoded maps generated from the raw and synthetic EEG data (top panels) are similar. 862 
However, from ~150 ms the bulk of the high probability region in the raw map begins to shift 863 
forwards, with only a small portion of activity left travelling diagonally along the No-864 
Compensation line. No such shift occurs in the synthetic map, with activity remaining centred 865 
on the No-Compensation line. This indicates that it takes ~150 ms for the ‘steady state’ 866 
temporal shift which we observed after sustained exposure to smooth motion to emerge.  867 

For the simulated maps, we can see that the same forwards shift occurs in the 868 
population-level activity of the trained STDP model, but not the untrained (control) model. In 869 
the trained model peak activity initially following the No-Compensation line, but then 870 
gradually shifts forwards across later timepoints. This occurs because of the velocity 871 
estimation process, in which the individual weights for each velocity subpopulation change as 872 
a function of time. At the earliest timepoints, all subpopulations are assumed to be active. 873 
Taking the average of each of these yields a global representation in which the constituent 874 
STDP shifts are effectively cancelled out (given that the range of velocities is symmetric around 875 
zero). As the information about the stimulus velocity is integrated, the global response 876 
gradually becomes dominated by the subpopulation tuned to 1 cycle/s, and the represented 877 
position shifts according to the STDP shift magnitude associated with this velocity. This shift 878 
in the global position representation occurs at each layer in a time delayed fashion, causing 879 
the angle of the line tracking activity peaks to change across layers during the intermediate 880 
timepoints. At the later timepoints, all layers have received full information about the stimulus 881 
velocity, resulting in a straight line connecting the activity peaks.  882 

While this qualitatively captures the dynamics in the EEG-derived maps, it is important 883 
to emphasis the speculative nature of this additional analysis and assumed velocity estimation 884 
mechanism. These hinge on the assumption that all velocity-tuned subpopulations are 885 
activated by the onset of the stimulus (i.e. the onset transient), with the population tuned to 886 
the true velocity eventually winning out (either due to direct competition, or a passive fading 887 
of onset evoked activity). However, it is also possible that no velocity-tuned populations are 888 
initially activated by stimulus onset, and that activity simply gradually builds up in the 889 
population tuned to the true velocity. Arbitrating between these two possibilities remains an 890 
interesting avenue for future research that will likely require the use of direct intracranial 891 
recording techniques. Crucially, the assumed velocity estimation process only alters the early 892 
temporal dynamics of the network, and has no influence on its ultimate ‘steady state’ 893 
behaviour. As such the main simulations are independent of this specific 894 
component/assumption, and only rely on the reasonable assumption that neurons tuned to 895 
a specific velocity are active after sustained exposure to motion.  896 



 27 

 897 

Figure S2. Tracking the formation of predictive time shifts. The top two rows show the 898 
temporal evolution of position information in the 250 ms following stimulus onset in the EEG 899 
data (top row: actual data, bottom row: synthetic control data). Bottom two panels show the 900 
equivalent for simulated network activity (top row: trained STDP model, bottom row: 901 
untrained control model).  902 


